Dyslipidemia is a common metabolic complication in patients undergoing peritoneal dialysis (PD) and has traditionally been viewed primarily in terms of cardiovascular risk. Current guidelines do not recommend initiating lipid-lowering therapy in dialysis patients due to insufficient evidence of its benefits on cardiovascular mortality. However, the impact of dyslipidemia in PD patients may extend beyond cardiovascular concerns, influencing PD-related outcomes such as the peritoneal ultrafiltration rate, residual kidney function, PD technique survival, and overall mortality. This review challenges the traditional perspective by discussing dyslipidemia's potential role in PD-related complications, which may account for the observed link between dyslipidemia and increased all-cause mortality in PD patients. It explores the pathophysiology of dyslipidemia in PD, the molecular mechanisms linking dyslipidemia to peritoneal membrane dysfunction, and summarizes clinical evidence supporting this hypothesis. In addition, this paper examines the potential for therapeutic strategies to manage dyslipidemia to improve peritoneal membrane function and patient outcomes. The review calls for future research to investigate dyslipidemia as a potential contributor to peritoneal membrane dysfunction and to develop targeted interventions for PD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505255 | PMC |
http://dx.doi.org/10.3390/biomedicines12102377 | DOI Listing |
Alzheimers Dement
December 2024
Yale University School of Medicine, New Haven, CT, USA.
Background: Kv1.3 channels are promising therapeutic targets to modulate neuroinflammatory responses in neurodegenerative disease including Alzheimer's disease (AD). Although the ability of Kv1.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Nephrology, Second Hospital of Jilin University, Changchun, China.
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.
View Article and Find Full Text PDFMuscle Nerve
December 2024
The Higher Education Institution Fizioterapevtika, Ljubljana, Slovenia.
Introduction/aims: We aimed to determine differences in diaphragm thickness by including/excluding pleural and peritoneal membranes, the variability in diaphragm thickness over the apposition zone, and the predictors of diaphragm thickness and excursion measurements.
Methods: At least 10 male and female subjects were recruited for each decade of life. Spirometry, respiratory muscle strength, and the diaphragm ultrasound (US) measurements were performed.
Mar Drugs
November 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!