Background: It is believed that alterations in the functioning of the cytochrome P450 (CYP), which participates in metabolic transformations of endogenous polyunsaturated fatty acids (PUFAs) (with the formation of cardioprotective or cardiotoxic products), affects the development of age-related cardiovascular diseases and reduces the effectiveness of some cardioselective drugs. For example, CYP2J2 activation or CYP1B1 inhibition protects against the cardiovascular toxicity of anticancer drugs. It is currently unclear whether CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs to vasodilatory and vasoconstrictive derivatives are expressed in all heart regions.
Methods: The work was performed on senescence-accelerated OXYS rats featuring elevated blood pressure, OXYSb rats (an OXYS substrain with normal blood pressure), and Wistar rats as a "healthy" control. The mRNA level was determined in the right and left ventricles, the right and left atria, and the aorta of 1-, 3-, and 12-month-old rats.
Results: We showed that all heart regions express CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs and revealed significant differences between heart regions both in the mRNA level of genes , , and and in the time course of expression changes with age.
Conclusions: We noticed that expression levels of these CYPs in the heart regions and aorta differ between hypertensive OXYS rats, normotensive OXYSb rats, and healthy Wistar rats but could not detect any clear-cut patterns associated with the hypertensive status of OXYS rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505345 | PMC |
http://dx.doi.org/10.3390/biomedicines12102374 | DOI Listing |
Molecules
December 2024
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia.
Increasing evidence on the adverse health impacts of microplastics (MPs) is available, but their associated risks to the well-being of humans and long-term impacts are poorly understood. An indicator of the remote effects of MPs may be their influence on the rate of aging. To assess the effects of MPs on the aging process, we used accelerated senescence OXYS rats that develop a complex of geriatric diseases.
View Article and Find Full Text PDFBiomedicines
October 2024
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
Background: It is believed that alterations in the functioning of the cytochrome P450 (CYP), which participates in metabolic transformations of endogenous polyunsaturated fatty acids (PUFAs) (with the formation of cardioprotective or cardiotoxic products), affects the development of age-related cardiovascular diseases and reduces the effectiveness of some cardioselective drugs. For example, CYP2J2 activation or CYP1B1 inhibition protects against the cardiovascular toxicity of anticancer drugs. It is currently unclear whether CYPs capable of metabolizing arachidonic acid and ω-3 PUFAs to vasodilatory and vasoconstrictive derivatives are expressed in all heart regions.
View Article and Find Full Text PDFBiochemistry (Mosc)
February 2024
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Visomitin eye drops are the first and, so far, the only drug based on SkQ1 - the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2023
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited.
View Article and Find Full Text PDFJ Alzheimers Dis
May 2024
The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!