Background: Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD.
Methods: We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells.
Results: This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of and by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under HO-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells.
Conclusions: TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after HO-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504366 | PMC |
http://dx.doi.org/10.3390/biomedicines12102243 | DOI Listing |
Brain Commun
December 2024
NeuroScape@NeuroTech Lab, Service Universitaire de Neuroréhabilitation (SUN), Département des Neurosciences Cliniques, Centre Hosoitalier Universitaire Vaudois (CHUV), Institution de Lavigny, University of Lausanne, 1011 Lausanne, Switzerland.
Neurocognitive impairment (NCI) is present in around 40% of people with HIV and substantially affects everyday life, adherence to combined antiretroviral therapy (cART) and overall life expectancy. Suboptimal therapy regimen, opportunistic infections, substance abuse and highly prevalent psychiatric co-morbidities contribute to NCI in people with HIV. In this review, we highlight the need for efficacious treatment of HIV-related NCI through pharmacological approaches and cognitive neurorehabilitation, discussing recent randomized controlled trials in this domain.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Botony, P.S.R College of Education, Sivakasi, Tamilnadu India.
This study aims to assess the neuroprotective effects of the methanolic extract of against oxidative stress and cell death induced by neurotoxins MPP in SH-SY5Y cells. Briefly, the methanolic extract of decreased the cytotoxicity of MPP in SH-SY5Y cells. Treatment with extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP -induced cells.
View Article and Find Full Text PDFBackground: Spinal cord injury (SCI) is a neurological disease characterized by high disability and mortality rates. Tomatidine, a natural steroid alkaloid, has been evidenced to have neuroprotective properties. However, the underlying mechanisms of tomatidine in treating SCI remain ambiguous.
View Article and Find Full Text PDFPeerJ
December 2024
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.
Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!