Elevated CO can affect the synthesis and distribution of photosynthetic assimilates. However, the carbohydrate metabolism molecular mechanism of cucumber leaves in response to CO enrichment is unclear. Therefore, it is of great significance to investigate the key functional regulatory genes in cucumber. In this study, the growth of cucumber leaves under different CO conditions was compared. The results showed that under CO enrichment, leaf area increased, the number of mesophyll cells increased, stomata enlarged, and more starch grains accumulated in the chloroplasts. Compared with the control, the starch and soluble sugar content of leaves were maximally increased by 194.1% and 55.94%, respectively; the activities of fructose-1,6-bisphosphatase (FBPase), ADPG pyrophosphorylase (AGPase), starch synthase (SSS), sucrose phosphate synthase (SPS), sucrose synthase (SS) and invertase (Inv) were maximally increased by 36.91%, 66.13%, 33.18%, 21.7%, 54.11%, and 46.01%, respectively. Through transcriptome analysis, a total of 1,582 differential expressed genes (DEGs) were identified, in which the starch and sucrose metabolism pathway was significantly enriched, and 23 genes of carbon metabolism were screened. Through metabolome analysis, a total of 22 differential accumulation metabolites (DAMs) were identified. Moreover, D-glucose and D(+)-glucose were significantly accumulated, showing upregulation 2.4-fold and 2.6-fold, respectively. Through combined analysis of transcriptome and metabolome, it was revealed that seven genes were highly related to D-glucose, and (AGPase), (β-glucosidase), and (4-α-glucanotransferase) were significantly correlated to the carbohydrate regulatory network. Furthermore, the mechanism of CO enrichment that promotes carbohydrate metabolism in leaves at the molecular level was revealed. This mechanism advances the development of the cell wall and leaf morphology by activating the expression of key genes and improving enzyme activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508717PMC
http://dx.doi.org/10.3390/ijms252011309DOI Listing

Publication Analysis

Top Keywords

carbohydrate metabolism
12
cucumber leaves
12
mechanism enrichment
8
maximally increased
8
analysis total
8
metabolism
5
leaves
5
genes
5
analysis
4
analysis mechanism
4

Similar Publications

Optimization of the large-scale production for Erwinia amylovora bacteriophages.

Microb Cell Fact

December 2024

Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.

Background: Fire blight, caused by Erwinia amylovora, poses a significant threat to global agriculture, with antibiotic-resistant strains necessitating alternative solutions such as phage therapy. Scaling phage therapy to an industrial level requires efficient mass-production methods, particularly in optimizing the seed culture process. In this study, we investigated large-scale E.

View Article and Find Full Text PDF

Background: The aim of this study is to investigate the effect of soil water stability on maize (Zea mays L.) yield, water use, and its photosynthetic physiological mechanisms, and to innovate the relationship between maize and soil water, which currently only considers soil water content and neglects soil water stability.

Methods: An organized water experiment was conducted on maize.

View Article and Find Full Text PDF

Microbial enzymes as powerful natural anti-biofilm candidates.

Microb Cell Fact

December 2024

Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.

View Article and Find Full Text PDF

Agastache rugosa, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in A. rugosa under different environmental conditions.

View Article and Find Full Text PDF

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!