Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as an external stimulus. Neonatal c-kit+ CPCs were stimulated using four different chimeric Notch-activating ligands tethered to Dynabeads, and the resulting changes were assessed using TaqMan gene expression arrays, with subsequent analysis by principal component analysis (PCA). Additionally, functional outcomes were measured using an endothelial cell tube formation assay and MSC migration assay to assess the paracrine capacity to stimulate new vessel formation and recruit other reparative cell types to the site of injury. Gene expression data showed that stimulation with Jagged-1 is associated with the greatest pro-angiogenic gene response, including the expression of VEGF and basement membrane proteins, while the other canonical ligands, Jagged-2, Dll-1, and Dll-4, are more associated with regulatory and epigenetic changes. The functional assay showed differential responses to the four ligands in terms of angiogenesis, while none of the ligands produced a robust change in migration. These data demonstrate how the four Notch-activating ligands differentially regulate CPC gene expression and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508355 | PMC |
http://dx.doi.org/10.3390/ijms252011182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!