The cornea is a vital component of the visual system, and its integrity is crucial for optimal vision. Damage to the cornea resulting from trauma, infection, or disease can lead to blindness. Corneal regeneration using mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) offers a promising alternative to corneal transplantation. MSCs are multipotent stromal cells that can differentiate into various cell types, including corneal cells. They can also secrete a variety of anti-inflammatory cytokines and several growth factors, promoting wound healing and tissue reconstruction. This review summarizes the current understanding of the molecular and cellular mechanisms by which MSCs and MSC-EVs contribute to corneal regeneration. It discusses the potential of MSCs and MSC-EV for treating various corneal diseases, including corneal epithelial defects, dry eye disease, and keratoconus. The review also highlights finalized human clinical trials investigating the safety and efficacy of MSC-based therapy in corneal regeneration. The therapeutic potential of MSCs and MSC-EVs for corneal regeneration is promising; however, further research is needed to optimize their clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507649 | PMC |
http://dx.doi.org/10.3390/ijms252011121 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.
Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.
Cell Tissue Bank
January 2025
Academic Ophthalmology, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.
View Article and Find Full Text PDFRegen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
Adhesive hydrogels, composed of hydrophilic polymers arranged in a three-dimensional network, have emerged as a pivotal innovation in ophthalmology due to their ability to securely adhere to ocular tissues while providing sustained therapeutic effects. The eye, with its delicate structure and specific needs, presents unique challenges for drug delivery and tissue regeneration. This review explores the transformative potential of adhesive hydrogels in addressing these challenges across a range of ocular conditions, including corneal injuries, cataracts, glaucoma, vitreoretinal disorders, and ocular trauma.
View Article and Find Full Text PDFExp Eye Res
January 2025
Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. Electronic address:
Substance P (SP) expressed by corneal nerves, is an 11-amino acid long neuropeptide from the tachykinin family, encoded by the Tac1 gene, and binds to neurokinin receptors. SP overexpression is associated with various pathological responses in the cornea including vasodilation, pain, inflammation, and angiogenesis in the normally avascular tissue. This study investigates the role of neurokinin-1 receptor (NK-1R) mediated signaling in nociception, nerve regeneration, and neuronal activation following mechanical corneal injury in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!