Patients with chronic myeloid leukemia (CML) respond to tyrosine kinase inhibitors (TKIs); however, CML leukemic stem cells (LSCs) exhibit BCR::ABL kinase-independent growth and are insensitive to TKIs, leading to disease relapse. To prevent this, new therapies targeting CML-LSCs are needed. Rates of mitochondria-mediated oxidative phosphorylation (OXPHOS) in CD34CML cells within the primitive CML cell population are higher than those in normal undifferentiated hematopoietic cells; therefore, the inhibition of OXPHOS in CML-LSCs may be a potential cure for CML. NK-128 (CHNOS) is a structurally simplified analog of JCI-20679, the design of which was based on annonaceous acetogenins. NK-128 exhibits antitumor activity against glioblastoma and human colon cancer cells by inhibiting OXPHOS and activating AMP-activated protein kinase (AMPK). Here, we demonstrate that NK-128 effectively suppresses the growth of CML cell lines and that the combination of imatinib and NK-128 is more potent than either alone in a CML xenograft mouse model. We also found that NK-128 inhibits colony formation by CD34 CML cells isolated from the bone marrow of untreated CML patients. Taken together, these findings suggest that targeting OXPHOS is a beneficial approach to eliminating CML-LSCs, and may improve the treatment of CML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508009 | PMC |
http://dx.doi.org/10.3390/ijms252011093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!