Improving the powdery mildew resistance of bitter gourd is highly important for achieving high yield and high quality. To better understand the genetic basis of powdery mildew resistance in bitter gourd, this study analyzed 300 lines of recombinant inbred lines (RILs) formed by hybridizing the powdery mildew-resistant material MC18 and the powdery mildew-susceptible material MC402. A high-density genetic map of 1222.04 cM was constructed via incorporating 1,996,505 SNPs generated by resequencing data from 180 lines, and quantitative trait locus (QTL) positioning was performed using phenotypic data at different inoculation stages. A total of seven QTLs related to powdery mildew resistance were identified on four chromosomes, among which qPm-3-1 was detected multiple times and at multiple stages after inoculation. By selecting 18 KASP markers that were evenly distributed throughout the region, 250 lines and parents were genotyped, and the interval was narrowed to 207.22 kb, which explained 13.91% of the phenotypic variation. Through RNA-seq analysis of the parents, 11,868 differentially expressed genes (DEGs) were screened. By combining genetic analysis, gene coexpression, and sequence comparison analysis of extreme materials, two candidate genes controlling powdery mildew resistance in bitter gourd were identified ( (C3H) and (F-box-LRR)). These results represent a step forward in understanding the genetic regulatory network of powdery mildew resistance in bitter gourd and lay a molecular foundation for the genetic improvement in powdery mildew resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508001PMC
http://dx.doi.org/10.3390/ijms252011080DOI Listing

Publication Analysis

Top Keywords

powdery mildew
28
mildew resistance
24
bitter gourd
20
resistance bitter
16
powdery
9
quantitative trait
8
trait locus
8
candidate genes
8
resistance
7
mildew
7

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Powdery mildew (PM), is a significant fungal disease that poses a considerable threat to global agricultural productivity. Autophagy and programmed cell death (PCD) are crucial plant defense responses against PM. However, the role of metacaspases (MCAs) in mediating the interplay between autophagy and PCD in wheat's resistance to PM remains unknown.

View Article and Find Full Text PDF

Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress.

Plant Physiol Biochem

December 2024

Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:

Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.

View Article and Find Full Text PDF

Positive regulation of a LuxR family protein, MilO, in mildiomycin biosynthesis.

Appl Environ Microbiol

December 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from , which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host .

View Article and Find Full Text PDF

Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!