AI Article Synopsis

  • Serrated lesions (SLs) are precursors to colorectal cancer (CRC), but how they progress to malignancy is not well understood; this study investigates that process using single-cell RNA sequencing.
  • The research identified three malignant epithelial cell subtypes linked to CRC progression and discovered that some SLs have specific gene expressions indicating their potential for invasiveness.
  • The study also highlights the role of certain fibroblast subtypes in tumor development and underscores the importance of understanding gene expression changes in SLs for improving CRC diagnosis and treatment.

Article Abstract

Serrated lesions are common precancerous pathways in colorectal cancer (CRC), but the process by which they progress to malignancy remains unclear. We aimed to elucidate this progression through a single-cell RNA landscape. We conducted single-cell RNA sequencing on three normal colonic tissues and fifteen SLs (including HPs, SSLs, SSLD, and TSAs) and integrated these data with datasets containing tumor samples. We identified three invasive malignant epithelial cell subtypes related to CRC progression: SLC1, SLC2, and tumor cell. SLC1, specific to SSLs, is involved in cell proliferation and shows a continuum of malignancy in gene expression. TSA-specific SLC2 exhibited FOXQ1 upregulation and active EMT, indicating invasiveness. The trajectory analysis showed that HPs do not progress to cancer, and different SL types are linked to the MSI status of advanced CRCs. We validated molecular drivers in premalignant lesions and later carcinogenesis. In the tumor microenvironment, CAF and pre-CAF fibroblast subtypes associated with progression were identified. During the premalignant stage, SLC1 triggered CD8+ T cell responses, while at the advanced stage, CAFs promoted tumor invasion and metastasis via FN1-CD44, influencing tumor progression and the treatment response. Our findings highlight transcriptional changes across serrated pathway stages, aiding in early CRC diagnosis and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507054PMC
http://dx.doi.org/10.3390/ijms252010944DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
8
single-cell rna
8
progression
5
tumor
5
single-cell transcriptomics
4
transcriptomics reveals
4
reveals cellular
4
cellular heterogeneity
4
heterogeneity drivers
4
drivers serrated
4

Similar Publications

Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.

View Article and Find Full Text PDF

Introduction: Randomized phase III trials showed that using trifluridine/tipiracil (FTD/TPI) in patients with pre-treated metastatic colorectal cancer (mCRC) conferred survival benefit versus placebo. Here, we investigated the effectiveness and safety of FTD/TPI and sought to identify prognostic factors among the mCRC population in Hong Kong.

Methods: A non-interventional, retrospective, multicenter cohort study enrolled patients with mCRC who received FTD/TPI in seven public hospitals in Hong Kong between 2016 and 2020.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Accurate identification and quantification of 5-hydroxymethylcytosine (5hmC) can help elucidate its function in gene expression and disease pathogenesis. Current 5hmC analysis methods still present challenges, especially for clinical applications, such as having a risk of false-positive results and a lack of sufficient sensitivity. Herein, a 5hmC quantification method for fragment-specific DNA sequences with extreme specificity, high sensitivity, and clinical applicability was established using a quantitative real-time PCR (qPCR)-based workflow through the combination of enzymatic digestion and biological deamination strategy (EDD-5hmC assay).

View Article and Find Full Text PDF

Dynamic change of polarity in spread through air spaces of pulmonary malignancies.

J Pathol

January 2025

Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Spread through air spaces (STAS) is a histological finding of lung tumours where tumour cells exist within the air space of the lung parenchyma beyond the margin of the main tumour. Although STAS is an important prognostic factor, the pathobiology of STAS remains unclear. Here, we investigated the mechanism of STAS by analysing the relationship between STAS and polarity switching in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!