The optimum germination conditions for foxtail millet sprouts enriched with γ-aminobutyric acid (GABA) and antioxidant polyphenols were investigated. From single-factor experimental results, both the GABA level and total phenolic content (TPC) were more significantly affected by soaking temperature and time, and concentration of sucrose culture solution. Response surface methodology (RSE) was used to optimize the germination conditions of foxtail millet sprouts, where the interaction between soaking temperature and sucrose concentration exhibited a significant ( < 0.05) effect on TPC, and the interaction between soaking time and sucrose concentration displayed a significant ( < 0.05) effect on GABA content. The optimal germination conditions for TPC and GABA enrichment of foxtail millet sprouts were soaking at 31 °C for 4.5 h and germinating at 35 °C with 4.5 g/L sucrose solution for 5 days. Under the optimized conditions, the TPC and GABA content of foxtail millet sprouts were 926.53 milligrams of ferulic acid equivalents per 100 g dry weight (mg FAE/100 g DW) and 259.13 mg/kg, separately, with less difference from the predicted values of 929.44 mg FAE/100 g DW and 263.60 mg/kg, respectively. Collectively, all the individual phenolic compounds increased significantly ( < 0.05) by optimization, except for --coumaric acid and -ferulic acid in bound. The results provide a practical technology for suitable germination conditions to improve the health components of foxtail millet sprouts and increase their added value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507858 | PMC |
http://dx.doi.org/10.3390/foods13203340 | DOI Listing |
BMC Plant Biol
December 2024
School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.
View Article and Find Full Text PDFPLoS One
December 2024
College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
Alfalfa (Medicago sativa) is known to release allelopathic substances to affect the germination and growth of other plants, which have the potential to be applied in controlling weeds. Green foxtail (Setaria viridis) and barnyardgrass (Echinochloa crus-galli), as malignant weeds worldwide, also pose a serious threat to alfalfa in northern China. In this study, the sensitivity of the two weeds to the extracts from the first, second, and third stubbles of six varieties were investigated to further reveal the allelopathic interference of different varieties of alfalfa on notorious weeds.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Science, Hebei Agricultural University, Baoding 071001, P. R. China.
Transketolase (TKL; EC 2.2.1.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.
View Article and Find Full Text PDFEvol Hum Sci
November 2024
UCL Institute of Archaeology, University College London, London WC1H 0PY, UK.
The transition to sedentary agricultural societies in northern China fuelled considerable demographic growth from 5000 to 2000 BC. In this article, we draw together archaeobotanical, zooarchaeological and bioarchaeological data and explore the relationship between several aspects of this transition, with an emphasis on the millet-farming productivity during the Yangshao period and how it facilitated changes in animal husbandry and consolidation of sedentism. We place the period of domestication (the evolution of non-shattering, initial grain size increase and panicle development) between 8300 and 4300 BC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!