The safety of sea bass is critical for the global food trade. This study evaluated the effectiveness of atmospheric cold plasma in reducing food safety risks posed by Enteritidis and , which can contaminate sea bass post harvest. Cold plasma was applied to inoculated sea bass for 2 to 18 min, achieving a maximum reduction of 1.43 log CFU/g for Enteritidis and 0.80 log CFU/g for at 18 min. Longer treatments resulted in greater reductions; however, odor and taste quality declined to a below average quality in samples treated for 12 min or longer. Plasma treatment did not significantly alter the color, texture, or water activity (aw) of the fish. Higher levels of thiobarbituric acid reactive substances (TBARSs) were observed with increased exposure times. Cold plasma was also tested in vitro on Enteritidis and on agar surfaces. A 4 min treatment eliminated the initial loads of Enteritidis (2.71 log CFU) and (2.98 log CFU). The findings highlight the potential of cold plasma in enhancing the safety of naturally contaminated fish. Cold plasma represents a promising technology for improving food safety in the global fish trade and continues to be a significant area of research in food science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507185 | PMC |
http://dx.doi.org/10.3390/foods13203290 | DOI Listing |
Sci Rep
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
This paper introduces a novel, compact plasma sterilization system, the Active Plasma Sterilizer (APS), for planetary protection space missions. The development of the APS system is done through iterative testing and design modifications aimed at addressing decontamination modalities for time and temperature, cleaning adhesive surfaces, and cleaning protocols beyond alcohol and bleach. Decontamination testing of Deinococcus radiodurans, Geobacillus stearothermophilus (spore forming bacteria), and Aspergillus fumigatus (fungi) was verified for the APS on relevant materials of 4 to 5 log reduction up to complete killing in 45 min or less.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil. Electronic address:
Bread is a greatly consumed bakery product worldwide. Unfortunately, it is an optimal substrate for fungal contamination and deterioration (aw > 0.95), commonly caused by the genera Penicillium, Paecilomyces, and Aspergillus, resulting in significant economic losses.
View Article and Find Full Text PDFFood Chem
December 2024
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland. Electronic address:
Graphene oxide (GO), renowned for its two-dimensional structure and exceptional fluorescence quenching capabilities, is a preferred choice for the construction of fluorescence biosensors. As the sensitivity demands for these sensors escalate, enhancing the fluorescence quenching performance of GO and reducing background fluorescence become paramount to optimize the sensor sensitivity. In this study, the use of cold plasma (CP) treatment with glucose solution as a reducing agent to refine GO into reduced graphene oxide (r-GO) with optimal fluorescence quenching abilities was explored.
View Article and Find Full Text PDFBiopreserv Biobank
December 2024
Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran.
Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm.
View Article and Find Full Text PDFCold atmospheric pressure plasma (CAPP) comprises an ensemble of ionized gas, neutral particles, and/or reactive species. Electricity is frequently used to produce CAPP via a variety of techniques, including plasma jets, corona discharges, dielectric barrier discharges, and glow discharges. The type and flow rates of the carrier gas(es), temperature, pressure, and vacuum can all be altered to control the desired properties of the CAPP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!