Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, glucose transporter (GLUT) 4 expression, and adenosine triphosphate (ATP) content in C2C12 myotubes. Gintonin (3-30 μg/mL) dose-dependently stimulated glucose uptake in myotubes. The expression of GLUT4 on the cell membrane was increased by gintonin treatment. Treatment with 1-3 μg/mL of gintonin increased glycogen content in myotubes, but the content was decreased at 30 μg/mL of gintonin. The ATP content in myotubes increased following treatment with 10-100 μg/mL gintonin. Gintonin transiently elevated intracellular calcium concentrations and increased the phosphorylation of extracellular signal-regulated kinase (ERK). Gintonin-induced transient calcium increases were inhibited by treatment with the lysophosphatidic acid receptor inhibitor Ki16425, the phospholipase C inhibitor U73122, and the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Gintonin-stimulated glucose uptake was decreased by treatment with U73122, the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester, and the ERK inhibitor PD98059. These results show that gintonin plays a role in glucose metabolism by increasing glucose uptake through transient calcium increases and ERK signaling pathways. Thus, gintonin may be beneficial for glucose metabolism control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505745 | PMC |
http://dx.doi.org/10.3390/biom14101316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!