Chemical and Biological Characterization of Metabolites from Using Mass Spectrometric and Cell-Based Assays.

Biomolecules

Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.

Published: October 2024

AI Article Synopsis

  • A detailed metabolite profiling of a medicinal plant using UHPLC-ESI-MS/MS was performed for the first time, identifying 71 compounds, mostly flavonoids, triterpene glycosides, and ecdysteroids.
  • The compounds schaftoside, 26-hydroxyecdysone, and silviridoside were highlighted as important markers for evaluating preparation quality.
  • The methanol extract demonstrated cytotoxic and Wnt pathway-inhibiting effects against triple-negative breast cancer, identifying 2-Deoxy-20-hydroxyecdysone as potent, while the presence of a hydroxyl group at C-2 in ecdysteroids was linked to reduced cytotoxicity against cancer cells.

Article Abstract

A comprehensive metabolite profiling of the medicinal plant using an UHPLC-ESI-MS/MS method is described for the first time. A total of 71 compounds were identified and annotated, the most common of which were flavonoids, triterpene glycosides, and ecdysteroids. The three major compounds schaftoside, 26-hydroxyecdysone, and silviridoside can be chosen as the markers for the assessment of the quality of preparations. The methanol extract and a variety of metabolites identified in were screened for their cytotoxic and Wnt pathway-inhibiting activities against triple-negative breast cancer (TNBC), the deadliest form of cancer in women. 2-Deoxy-20-hydroxyecdysone with submicromolar IC was identified as a result. The structure-activity relationship derived from the data from the in vitro proliferation assay showed that the hydroxyl group present at position C-2 of steroid core reduces the ecdysteroids' cytotoxicity against cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505650PMC
http://dx.doi.org/10.3390/biom14101285DOI Listing

Publication Analysis

Top Keywords

chemical biological
4
biological characterization
4
characterization metabolites
4
metabolites mass
4
mass spectrometric
4
spectrometric cell-based
4
cell-based assays
4
assays comprehensive
4
comprehensive metabolite
4
metabolite profiling
4

Similar Publications

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

Snakebite envenomation is a public health issue that can lead to mortality and physical consequences. It is estimated that 5.4 million venomous snake bites occur annually, with 130,000 deaths and 400,000 amputations.

View Article and Find Full Text PDF

NIST Mass Spectral Libraries in the Context of the Circular Economy of Plastics.

J Am Soc Mass Spectrom

January 2025

Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899, United States.

The Mass Spectrometry Data Center (MSDC) has recently started improving existing libraries and creating new ones for identifying and analyzing plastics-related compounds (PRC) and materials (PRM) as part of the NIST circular economy program. PRC are small molecules of dissimilar chemical nature; hence, to increase coverage, we have used three types of ionizations: EI, ESI, and APCI. PRM are solids that include polymers, polymer mixtures, and commercial plastics, so we have used pyrolysis-gas chromatography (py-GC-MS) to create a new searchable library.

View Article and Find Full Text PDF

Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery.

Biomacromolecules

January 2025

Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.

The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!