Hypertrophy of the ligamentum flavum (HLF) is a common contributor to lumbar spinal stenosis (LSS). Fibrosis is a core pathological factor of HLF resulting in degenerative LSS and associated low back pain. Although progress has been made in HLF research, the specific molecular mechanisms that promote HLF remain to be defined. The molecular factors involved in the onset of HLF include increases in inflammatory cytokines such as transforming growth factor (TGF)-β, matrix metalloproteinases, and pro-fibrotic growth factors. In this review, we discuss the current understanding of the mechanisms involved in HLF with a particular emphasis on aging and mechanical stress. We also discuss in detail how several pathomechanisms such as fibrosis, proliferation and apoptosis, macrophage infiltration, and autophagy, in addition to several molecular pathways involving TGF-β1, mitogen-activated protein kinase (MAPKs), and nuclear factor-κB (NF-κB) signaling, PI3K/AKT signaling, Wnt signaling, micro-RNAs, extracellular matrix proteins, reactive oxygen species (ROS), etc. are involved in fibrosis leading to HLF. We also present a summary of the current advancements in preclinical animal models for HLF research. In addition, we update the current and potential therapeutic targets/agents against HLF. An improved understanding of the molecular processes behind HLF and a novel animal model are key to developing effective LSS prevention and treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506588 | PMC |
http://dx.doi.org/10.3390/biom14101277 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.
FEBS Open Bio
December 2024
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, Italy.
The condition of cellular senescence has specific features, including an altered lipid metabolism. Delta-9 desaturase (Δ9) catalyzes the conversion of saturated fatty acids, such as palmitic acid and stearic acid, into their monounsaturated forms, palmitoleic and oleic acid, respectively. Δ9 activity is important for most lipid functions, such as membrane fluidity, lipoprotein metabolism and energy storage.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China. Electronic address:
To effectively control pollution and protect the ecosystem, it is essential to accurately analyze the potential pollution sources of heavy metals (HMs) in rivers. However, the traditional source apportionment methods based on HMs disregard the interaction between HMs and dissolved organic matter (DOM). In this study, data of HMs and DOM was combined for tracing sources and assessing the effect of interaction between HMs and DOM on source apportionment in urbanized rivers that cross urban (URR), industrial (INR), and rural (RUR) regions.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!