Optimizing energy absorption and peak force in metal/glass fiber sandwich panels with trapezoidal cores.

Sci Rep

Faculty of Mechanical Engineering, Velayat University, P.O. Box 99111 - 31311, Iranshahr, Iran.

Published: October 2024

Sandwich panels with trapezoidal metal/glass fiber cores are increasingly popular due to their lightweight and energy-absorption properties. This study employs response surface methodology (RSM) and Box-Behnken design to investigate the effects of core angle, fiber orientation, and MCM-48 nanoparticles on the panels' energy absorption and peak force, developing regression models with high R values of 0.9027 and 0.9228, respectively. Experimental tests were conducted to validate these models, showing minimal deviation from predicted values. Results indicate that increasing the fiber orientation angle from 30° to 90° enhances energy absorption and peak force by 72.18 and 46.9%, respectively, and adding MCM-48 nanoparticles up to 0.25% weight improves energy absorption by 60.8%. A core angle of 52° balances energy absorption and peak force, while integrating a metal wire mesh within the panels significantly enhances energy absorption and reduces core brittleness. The optimal parameters for maximum energy absorption and minimum peak force include a core angle of 58°, fiber orientation of 73.5°, and no nanoparticles. These findings provide valuable insights into the design and optimization of sandwich panels for various applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512058PMC
http://dx.doi.org/10.1038/s41598-024-76235-xDOI Listing

Publication Analysis

Top Keywords

energy absorption
28
peak force
20
absorption peak
16
sandwich panels
12
core angle
12
fiber orientation
12
metal/glass fiber
8
panels trapezoidal
8
mcm-48 nanoparticles
8
enhances energy
8

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.

View Article and Find Full Text PDF

Scrutinizing the untapped potential of emerging ABSe (A = Ca, Ba; B = Zr, Hf) chalcogenide perovskites solar cells.

Sci Rep

January 2025

Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, C.P.76010, Querétaro, México.

ABSchalcogenide perovskites (CPs) are emerging as promising alternatives to lead halide perovskites due to their unique properties. However, their bandgap exceeds the Shockley-Queisser limit. By substituting S with Se, the bandgap is significantly reduced, shifting it from the visible into the near-infrared region.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!