A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial community acclimation during anaerobic digestion of high-oil food waste. | LitMetric

Microbial community acclimation during anaerobic digestion of high-oil food waste.

Sci Rep

Hangzhou Huaxin Mechanical and Electrical Engineering Co., Ltd, Hangzhou, 310030, China.

Published: October 2024

Anaerobic digestion is one of the most promising options for the disposal of biodegradable food waste. However, the relatively high content of oil in food waste inhibits the conversion efficiency of anaerobic digestion because of the accumulation of long-chain fatty acids (LCFAs). In this study, activated anaerobic sludge was acclimated to accommodate high-oil conditions. The methane yield of high-oil food waste digested by the acclimated sludge increased by 24.9% compared to that digested by the raw sludge. To determine the internal changes in the acclimated sludge, the shifts in the microbial communities during the acclimation period were investigated via high-throughput sequencing (HTS) based on the 16 S rRNA gene. The results indicated that Bacteroidetes, Firmicutes, Chloroflexi and Proteobacteria were the dominant bacteria at the phylum level. The acclimation time allows some functional bacterial taxa to proliferate, such as Clostridium and Longilinea, which are able to degrade LCFAs and turn them into small organic molecules that also have nutrient value for other bacteria. Among the archaeal communities, the hydrogenotrophic methanogen Methanobacterium nearly supplanted the acetotrophic methanogen Methanosaeta. The time profiles of volatile fatty acids (VFAs) and pH during this period provided additional evidence for the success of the acclimation. This study demonstrated the effectiveness of acclimation and the dynamic of microbial communities, which further contributed to the management and resource utilization of high-oil food waste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511842PMC
http://dx.doi.org/10.1038/s41598-024-77136-9DOI Listing

Publication Analysis

Top Keywords

food waste
20
anaerobic digestion
12
high-oil food
12
fatty acids
8
acclimated sludge
8
microbial communities
8
acclimation
5
food
5
waste
5
microbial community
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!