A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of metabolic biomarkers in idiopathic pulmonary arterial hypertension using targeted metabolomics and bioinformatics analysis. | LitMetric

Pulmonary arterial hypertension (PAH) is a life-threatening disease with a poor prognosis, and metabolic abnormalities play a critical role in its development. This study used metabolomics, machine learning algorithms and bioinformatics to screen for potential metabolic biomarkers associated with the diagnosis of PAH. In this study, plasma samples were collected from 17 patients diagnosed with idiopathic pulmonary arterial hypertension (IPAH) and 20 healthy controls. Plasma metabolomic profiling was performed by high-performance liquid chromatography-mass spectrometry. Gene profiles of PAH patients were obtained from the GEO database. Key differentially expressed metabolites (DEMs) and metabolism-related genes were subsequently identified using machine learning algorithms. Twenty differential plasma metabolites associated with IPAH were identified (VIP score > 1 and p < 0 0.05), and enrichment analysis revealed the arginine biosynthesis pathway as the most altered pathway. Using machine learning models, including least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM), we extracted key metabolites that correlated with clinical phenotypes. Our results suggested that five metabolites, kynurenine, homoserine, tryptophan, AMP, and spermine, are potential biomarkers for IPAH. Bioinformatics analysis also identified 3 metabolism-related genes, MAPK6, SLC7A11 and CDC42BPA, that are strongly correlated with pulmonary hypertension, demonstrating strong predictive power and clinical relevance. Our findings revealed some key genes associated with metabolism in PH, and provided crucial information about complex metabolic reprogramming signals and may lead to the identification of useful metabolic biomarkers for the diagnosis of PAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511845PMC
http://dx.doi.org/10.1038/s41598-024-76514-7DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
12
arterial hypertension
12
metabolic biomarkers
8
idiopathic pulmonary
8
machine learning
8
learning algorithms
8
identification metabolic
4
biomarkers idiopathic
4
hypertension targeted
4
targeted metabolomics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!