VO is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO film between a flat gold layer and a gold nanodisk resonator array. The resonance of the hybrid metamaterial is centered in the useful 3-5 μm range when VO is in its semiconductor state. The experimental study highlights a monotonical spectral tuning of the resonance when increasing temperature up to 50 °C above the room temperature, providing a continuous resonance shift of almost 1 μm in the mid-infrared range. Wavelength range and intensity tunability can be further optimized by modifying the thicknesses of the layers and metamaterial parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512023PMC
http://dx.doi.org/10.1038/s41598-024-75430-0DOI Listing

Publication Analysis

Top Keywords

hybrid metamaterial
8
gap resonance
8
resonance
5
active infrared
4
infrared tuning
4
tuning metal-insulator-metal
4
metal-insulator-metal resonances
4
resonances thin
4
thin film
4
film promising
4

Similar Publications

Article Synopsis
  • The study introduces a neo-Hookean elasticity theory for hybrid mechano-active hydrogels by incorporating motor proteins into polymer structures, leading to materials that actively soften due to adjustable chain overlaps.
  • The focus is on polyacrylamide hydrogels enhanced with the bacterial protein FtsZ, using a multiscale model that combines microscopic rubber mesh theory, mesoscopic scaling concepts, and phase transition formalism to explain the observed active softening.
  • This research provides valuable insights for designing and controlling complex active hydrogels, potentially advancing applications in technology and biomedicine.
View Article and Find Full Text PDF

Lattice structures are an innovative solution to increase the strength-to-weight ratio of a structure. In this study, two polymeric hybrid lattice structures-"FRB" (a heterogenous structure which is indeed a BCC structure reinforced by FCC unit cells dispersed in a way to form a chessboard pattern in each layer) and the "Multifunctional" (a homogenous structure whose unit cells are a combination of FCC and BCC unit cells where their central nodes are connected)-are proposed, fabricated via liquid crystal display 3D printing technique, and their mechanical characteristics are evaluated under quasi-static loading, experimentally and numerically. The results indicate a 15.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

Could Metamaterials be the Next Frontier of Catalysis?

Small

December 2024

Department of Electrical and Electronic Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Plasmonic catalysis, whereby either an optically resonating metal couples to a catalytic material or a catalytic metal particle achieves optical resonance, has been a mainstay of photo-catalysis research for the past few decades. However, a new field of metal-dielectric metamaterials, including plasmonic metamaterials, is emerging as the next frontier in catalysis research. With new optical behaviors that can be achieved by sub-wavelength structures, in either periodic or semi-periodic arrangements, metamaterials can overcome some of the limitations of conventional plasmonic catalysis.

View Article and Find Full Text PDF

Electrostatic Orientation of Optically Asymmetric Janus Particles.

ACS Omega

December 2024

Metamaterials Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.

Janus micro- and nanoparticles, featuring unique dual-interface designs, are at the forefront of rapidly advancing fields such as optics, medicine, and chemistry. Accessible control over the position and orientation of Janus particles within a cluster is crucial for unlocking versatile applications, including targeted drug delivery, self-assembly, micro- and nanomotors, and asymmetric imaging. Nevertheless, precise mechanical manipulation of Janus particles remains a significant practical challenge across these fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!