Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study's objective is to evaluate and compare the sustainability of power production techniques for India's transition to clean power generation. It specifically focuses on coal-based power generation with emission control technologies, flue gas desulfurization (FGD) with carbon capture and storage (CCS), and compares it with solar photovoltaic (PV) systems. The study conducted a life cycle assessment (LCA) to determine the environmental impact of electricity generation in each scenario. Inventory data has been collected for each case through plant visits, emission modelling, and literature searches. The study evaluated midpoint and endpoint impact indicators utilizing the ReCiPe (H) assessment methodology. The economic viability of all the cases was determined by calculating the levelized cost of electricity (LCOE). The results showed that retrofitting an existing power plant with flue gas desulfurization (FGD) and carbon capture and storage (CCS) reduced efficiency by 30%, required 1.2 times more auxiliary power, and increased heat rates. The LCA results showed that the global warming potential (GwP) for FGD and CCS together was 0.614 kg CO eq. per kWh of power generation. On the other hand, the GwP for the solar PV system was much lower, at 0.043 kg CO eq. per kWh. There were trade-offs in both cases, but solar PV plants are more environmentally friendly than thermal power plants equipped with CCS systems in almost all categories. Furthermore, the LCOE results showed Rs 3.87 per kWh for an on-grid solar PV plant and Rs 5.33 for thermal power, with CCS and FGD showing solar as an economically more feasible option. Retrofitting thermal power facilities with emission control technology is necessary to achieve net zero emissions, but transition to renewable energy sources is inevitable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-35248-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!