Concrete-Inspired Bionic Bone Glue Repairs Osteoporotic Bone Defects by Gluing and Remodeling Aging Macrophages.

Adv Sci (Weinh)

Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, China.

Published: December 2024

Osteoporotic fractures are characterized by abnormal inflammation, deterioration of the bone microenvironment, weakened mechanical properties, and difficulties in osteogenic differentiation. The chronic inflammatory state characterized by aging macrophages leads to delayed or non-healing of the fracture or even the formation of bone defects. The current bottleneck in clinical treatment is to achieve strong fixation of the comminuted bone fragments and effective regulation of the complex microenvironment of aging macrophages. Inspired by cement and gravel in concrete infrastructure, a biomimetic bone glue with poly(lactic-co-glycolic acid) microspheres is developed and levodopa/oxidized chitosan hydrogel stabilized on an organic-inorganic framework of nanohydroxyapatite, named DOPM. DOPM is characterized via morphological and mechanical characterization techniques, in vitro experiments with bone marrow mesenchymal stromal cells, and in vivo experiments with an aged SD rat model exhibiting osteoporotic bone defects. DOPM exhibited excellent adhesion properties, good biocompatibility, and significant osteogenic differentiation. Transcriptomic analysis revealed that DOPM improved the inflammatory microenvironment by inhibiting the NF-κB signaling pathway and promoting aging macrophage polarization toward M2 macrophages, thus significantly accelerating bone defect repair and regeneration. This biomimetic bone glue, which enhances osteointegration and reestablishes the homeostasis of aging macrophages, has potential applications in the treatment of osteoporotic bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202408044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672322PMC

Publication Analysis

Top Keywords

bone defects
16
aging macrophages
16
bone glue
12
osteoporotic bone
12
bone
11
osteogenic differentiation
8
biomimetic bone
8
aging
5
macrophages
5
concrete-inspired bionic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!