AI Article Synopsis

  • The study focuses on understanding soil nutrient dynamics in heavily degraded alpine meadows, particularly looking at the relationships between carbon, nitrogen, and phosphorus levels.
  • Field experiments and statistical analysis revealed that during severe degradation, soil nutrient ratios and contents were imbalanced, with the presence of nitrogen limitation and variations more pronounced in organic carbon compared to nitrogen and phosphorus.
  • Key findings included a significant decrease in organic carbon and changes in phosphorus content linked to the degree of meadow degradation, emphasizing the role of soil water content and vegetation in nutrient dynamics.

Article Abstract

An in-depth understanding of the soil nutrient status and balance relationship can help the effective recovery and management of alpine degraded meadows. In order to study the balance relationship among soil carbon, nitrogen, and phosphorus nutrients during the heavy degradation stage of meadows, field sampling and investigation, indoor analysis, and mathematical statistics were used to explore the characteristics and driving factors of changes in soil carbon, nitrogen, and phosphorus content, storage, and ecological stoichiometry during the heavy degradation stage of alpine meadows in the Sanjiangyuan region. The results showed that in the heavy degradation stage, miscellaneous grass plants occupied absolute dominance, soil C∶N∶P was approximately 32.83∶3.87∶0.67, and there was certain nitrogen limitation. The coefficients of variation of soil carbon, nitrogen, and phosphorus content were in the following order: organic carbon (1.09) > total nitrogen (0.63) > total phosphorus (0.29). The organic carbon content and the carbon and nitrogen ratio showed a significant linear decreasing trend with the increase in the grassland degradation index (GDI), while the total phosphorus content and organic carbon storage showed a significant non-linear change, in which the total phosphorus content showed a significant gentle U-shaped distribution, and the organic carbon storage decreased more gently at the beginning of the heavy degradation stage and then decreased sharply when the GDI was 57.9. The results of Mantel correlation analysis showed that the soil carbon to nitrogen ratio, carbon to phosphorus ratio, and nitrogen to phosphorus ratio showed significant correlation with organic carbon content and storage and total nitrogen storage. The results of structural equation modeling indicated that soil water content had direct effects as well as indirect through vegetation factors, soil carbon, nitrogen, and phosphorus ecological stoichiometry ratios, and soil water content and vegetation factors (height, cover, and biomass) were key environmental factors affecting soil ecological stoichiometry. The research results can provide scientific basis and practical guidance for the restoration of heavily degraded grassland in alpine meadows.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202310130DOI Listing

Publication Analysis

Top Keywords

carbon nitrogen
28
soil carbon
24
nitrogen phosphorus
24
heavy degradation
20
degradation stage
20
organic carbon
20
ecological stoichiometry
16
phosphorus content
16
carbon
13
total phosphorus
12

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Facile and Regioselective Deuteration of C2-Alkylated Imidazolium Salts in the Presence of Cesium Carbonate.

Chemistry

December 2024

Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.

Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.

View Article and Find Full Text PDF

Diazotrophic cyanobacteria can overcome nitrogen (N)-limitation by fixing atmospheric N; however, this increases their energetic, iron, molybdenum, and boron costs. It is unknown how current and historic N-supplies affect cyanobacterial elemental physiology beyond increasing demands for elements involved in N-fixation. Here, we examined the changes in pigment concentrations, N-storage, and the ionome (i.

View Article and Find Full Text PDF

Whole-genome sequencing and genomic analysis of four strains newly isolated from human feces.

Front Microbiol

December 2024

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.

View Article and Find Full Text PDF

Response Surface Methodology for Optimization of Media Components for Production of Lipase from KUBT4.

Arch Razi Inst

June 2024

Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).

Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!