A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvieoa99g30e8cu0t6intl59q0lbiu9g6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "choices"

Filename: controllers/Detail.php

Line Number: 249

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 249

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 249

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 249

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: 8192

Message: strpos(): Passing null to parameter #1 ($haystack) of type string is deprecated

Filename: models/Detail_model.php

Line Number: 71

Backtrace:

File: /var/www/html/application/models/Detail_model.php
Line: 71
Function: strpos

File: /var/www/html/application/controllers/Detail.php
Line: 252
Function: insertAPISummary

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8919

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8919
Function: str_replace

File: /var/www/html/application/controllers/Detail.php
Line: 255
Function: formatAIDetailSummary

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "choices"

Filename: controllers/Detail.php

Line Number: 256

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 256

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 256

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "usage"

Filename: controllers/Detail.php

Line Number: 257

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 257

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "usage"

Filename: controllers/Detail.php

Line Number: 258

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 258

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "usage"

Filename: controllers/Detail.php

Line Number: 259

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 259

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Undefined array key "usage"

Filename: controllers/Detail.php

Line Number: 260

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 260

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type null

Filename: controllers/Detail.php

Line Number: 260

Backtrace:

File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

Time will tell: time-lapse technology and artificial intelligence to set time cut-offs indicating embryo incompetence. | LitMetric

AI Article Synopsis

Article Abstract

Study Question: Can more reliable time cut-offs of embryo developmental incompetence be generated by combining time-lapse technology (TLT), artificial intelligence, and preimplantation genetics screening for aneuploidy (PGT-A)?

Summary Answer: Embryo developmental incompetence can be better predicted by time cut-offs at multiple developmental stages and for different ranges of maternal age.

What Is Known Already: TLT is instrumental for the continual and undisturbed observation of embryo development. It has produced morphokinetic algorithms aimed at selecting embryos able to generate a viable pregnancy, however, such efforts have had limited success. Regardless, the potential of this technology for improving multiple aspects of the IVF process remains considerable. Specifically, TLT could be harnessed to discriminate developmentally incompetent embryos: i.e. those unable to develop to the blastocyst stage or affected by full-chromosome meiotic aneuploidies. If proven valuable, this application would prevent the non-productive use of such embryos, thereby improving laboratory and clinical efficiency and reducing patient stress and costs due to unnecessary embryo transfer and cryopreservation.

Study Design, Size, Duration: The training dataset involved embryos of PGT-A cycles cultured in Embryoscope with a single media (836 euploid and 1179 aneuploid blastocysts and 1874 arrested embryos; 2013-2020). Selection criteria were ejaculated sperm, own (not donated) fresh oocytes, trophectoderm biopsy and comprehensive-chromosome-testing to diagnose uniform aneuploidies. Out-of-sample (30% of training), internal (299 euploid and 490 aneuploid blastocysts and 680 arrested embryos; 2021-2022) and external (97 euploid, 110 aneuploid and 603 untested blastocysts and 514 arrested embryos, 2018 to early 2022) validations were conducted.

Participants/materials, Setting, Methods: A training dataset (70%) was used to define thresholds. Several models were generated by fitting outcomes to each timing (tPNa-t8) and maternal age. ROC curves pinpointed in-sample classification values associated with 95%, 99% and 99.99% true-positive rate for predicting incompetence. These values were integrated with upper limits of maternal age ranges (<35, 35-37, 38-40, 41-42, and >42 years) in logit functions to identify time cut-offs, whose accuracy was tested on the validation datasets through confusion matrices.

Main Results And The Role Of Chance: For developmental (in)competence, the best performing (i) tPNa cut-offs were 27.8 hpi (error-rate: 0/743), 32.6 hpi (error rate: 0/934), 26.8 hpi (error rate: 0/1178), 22.9 hpi (error-rate: 1/654, 0.1%) and 17.2 hpi (error rate: 4/423, 0.9%) in the <35, 35-37, 38-40, 41-42, and >42 years groups, respectively; (ii) tPNf cut-offs were 36.7 hpi (error rate: 0/738), 47.9 hpi (error rate: 0/921), 45.6 hpi (error rate: 1/1156, 0.1%), 44.1 hpi (error rate: 0/647) and 41.8 hpi (error rate: 0/417); (iii) t2 cut-offs were 50.9 hpi (error rate: 0/724), 49 hpi (error rate: 0/915), 47.1 hpi (error rate: 0/1146), 45.8 hpi (error rate: 0/636) and 43.9 hpi (error rate: 0/416); (iv) t4 cut-offs were 66.9 hpi (error rate: 0/683), 80.7 hpi (error rate: 0/836), 77.1 hpi (error rate: 0/1063), 74.7 hpi (error rate: 0/590) and 71.2 hpi (error rate: 0/389); and (v) t8 cut-offs were 118.1 hpi (error rate: 0/619), 110.6 hpi (error rate: 0/772), 140 hpi (error rate: 0/969), 135 hpi (error rate: 0/533) and 127.5 hpi (error rate: 0/355). tPNf and t2 showed a significant association with chromosomal (in)competence, also when adjusted for maternal age. Nevertheless, the relevant cut-offs were found to perform less well and were redundant compared with the blastocyst development cut-offs.

Limitations, Reasons For Caution: Study limits are its retrospective design and the datasets being unbalanced towards advanced maternal age cases. The potential effects of abnormal cleavage patterns were not assessed. Larger sample sizes and external validations in other clinical settings are warranted.

Wider Implications Of The Findings: If confirmed by independent studies, this approach could significantly improve the efficiency of ART, by reducing the workload and patient impacts (extended culture and cleavage stage cryopreservation or transfer) associated with embryos that ultimately are developmentally incompetent and should not be considered for treatment. Pending validation, these data might be applied also in static embryo observation settings.

Study Funding/competing Interest(s): This study was supported by the participating institutions. The authors have no conflicts of interest to declare.

Trial Registration Number: N/A.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/deae239DOI Listing

Publication Analysis

Top Keywords

hpi error
92
error rate
92
hpi
25
rate
24
error
23
time cut-offs
16
maternal age
16
developmental incompetence
12
arrested embryos
12
cut-offs
10

Similar Publications

Study Question: Can modelling the longitudinal morphokinetic pattern of euploid embryos during time-lapse monitoring (TLM) be helpful for selecting embryos with the highest live birth potential?

Summary Answer: Longitudinal reference ranges of morphokinetic development of euploid embryos have been identified, and embryos with steadier progression during TLM are associated with higher chances of live birth.

What Is Known Already: TLM imaging is increasingly adopted by fertility clinics as an attempt to improve the ability of selecting embryos with the highest potential for implantation. Many markers of embryonic morphokinetics have been incorporated into decision algorithms for embryo (de)selection.

View Article and Find Full Text PDF

Rationale And Objectives: Misregistration artifacts between the PET and attenuation correction CT (CTAC) exams can degrade image quality and cause diagnostic errors. Deep learning (DL)-warped elastic registration methods have been proposed to improve misregistration errors.

Materials And Methods: 30 patients undergoing routine oncologic examination (20 F-FDG PET/CT and 10 Cu-DOTATATE PET/CT) were retrospectively identified and compared using unmodified CTAC, and a DL-augmented spatial transformation CT attenuation map.

View Article and Find Full Text PDF

Study Question: Can more reliable time cut-offs of embryo developmental incompetence be generated by combining time-lapse technology (TLT), artificial intelligence, and preimplantation genetics screening for aneuploidy (PGT-A)?

Summary Answer: Embryo developmental incompetence can be better predicted by time cut-offs at multiple developmental stages and for different ranges of maternal age.

What Is Known Already: TLT is instrumental for the continual and undisturbed observation of embryo development. It has produced morphokinetic algorithms aimed at selecting embryos able to generate a viable pregnancy, however, such efforts have had limited success.

View Article and Find Full Text PDF

Moving Toward Metaproteogenomics: A Computational Perspective on Analyzing Microbial Samples via Proteogenomics.

Methods Mol Biol

October 2024

Domain Data Competence Center (MF2), Department for Research Infrastructure and Information Technology, Robert Koch Institute, Berlin, Germany.

Microbial sample analysis has received growing attention within the last decade, driven by important findings in microbiome research and promising applications in the biotechnological field. Modern mass spectrometry-based methodology has been established in this context, providing sufficient sensitivity, resolution, dynamic range, and throughput to analyze the so-called metaproteome of complex microbial mixtures from clinical or environmental samples. While proteomic analyses were previously restricted to common model organisms, next-generation sequencing technologies nowadays allow for the rapid and cost-efficient characterization of whole metagenomes of microbial consortia and specific genomes from non-model organisms to which microbes contribute by significant amounts.

View Article and Find Full Text PDF

Assessing and predicting quality of groundwater is crucial in managing groundwater availability effectively. In the current study, groundwater quality was thoroughly appraised using various indexing methods, including the drinking water quality index (DWQI), pollution index of heavy metals (HPI), pollution index (PI), metal index (MI), degree of contamination (C), and risk indicators, like hazard quotient (HQ) and total hazard indicator (HI). The assessments were augmented through multivariate analytical techniques, models based on recurrent neural networks (RNNs), and integration of geographic information system (GIS) technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!