Exploring the binding mode of phenyl and vinyl boronic acids to human carbonic anhydrases.

Int J Biol Macromol

Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy. Electronic address:

Published: December 2024

Boronic acids are an interesting but still poorly studied class of carbonic anhydrase inhibitors. Previous investigations proved that derivatives incorporating aromatic, arylalkyl, and arylalkenyl moieties are low micromolar to millimolar inhibitors for several α- and β-CAs involved in pathologic states. Here we report a high-resolution X-ray study on two classes of boronic acids (phenyl and vinyl) in complex with hCA II. Our results unambiguously clarify the binding mode of these molecules to the human carbonic anhydrase active site, which occurs through their tetrahedral anionic form, regardless of the nature of the organic scaffold. Data here presented contribute to the understanding of the inhibition mechanism of boronic acids that can be fruitfully used for the rational design of novel and effective isozyme-specific carbonic anhydrase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136873DOI Listing

Publication Analysis

Top Keywords

boronic acids
16
carbonic anhydrase
12
binding mode
8
phenyl vinyl
8
human carbonic
8
anhydrase inhibitors
8
exploring binding
4
mode phenyl
4
boronic
4
vinyl boronic
4

Similar Publications

Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.

View Article and Find Full Text PDF

Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.

View Article and Find Full Text PDF

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

Herein, we present a copper-catalyzed, three-component intermolecular 1,4-alkylarylation of 1,3-enynes with ethers and aryl boronic acids. This method, driven by α-C(sp)-H functionalization of the oxygen atom in ethers, regioselectively produces various tetrasubstituted allenes from simple, readily available precursors. Key features include mild reaction conditions and a simple catalytic system.

View Article and Find Full Text PDF

Enhancing staging in multiple myeloma using an m6A regulatory gene-pairing model.

Clin Exp Med

January 2025

Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.

Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. A cutoff of - 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!