Boronic acids are an interesting but still poorly studied class of carbonic anhydrase inhibitors. Previous investigations proved that derivatives incorporating aromatic, arylalkyl, and arylalkenyl moieties are low micromolar to millimolar inhibitors for several α- and β-CAs involved in pathologic states. Here we report a high-resolution X-ray study on two classes of boronic acids (phenyl and vinyl) in complex with hCA II. Our results unambiguously clarify the binding mode of these molecules to the human carbonic anhydrase active site, which occurs through their tetrahedral anionic form, regardless of the nature of the organic scaffold. Data here presented contribute to the understanding of the inhibition mechanism of boronic acids that can be fruitfully used for the rational design of novel and effective isozyme-specific carbonic anhydrase inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136873 | DOI Listing |
Anal Chim Acta
February 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, China. Electronic address:
Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.
View Article and Find Full Text PDFChemSusChem
January 2025
Comenius University FNS: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta, Organic chemistry, Mlynska dolina, Ilkovicova 6, 84215, Bratislava, SLOVAKIA.
Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.
Herein, we present a copper-catalyzed, three-component intermolecular 1,4-alkylarylation of 1,3-enynes with ethers and aryl boronic acids. This method, driven by α-C(sp)-H functionalization of the oxygen atom in ethers, regioselectively produces various tetrasubstituted allenes from simple, readily available precursors. Key features include mild reaction conditions and a simple catalytic system.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. A cutoff of - 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!