Bioremediation of nitrate in agricultural drainage ditches: Impacts of low-grade weirs on microbiomes and nitrogen cycle gene abundance.

Sci Total Environ

Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA. Electronic address:

Published: December 2024

Artificial drainage is essential for the success of modern agriculture, but it can also accelerate the movement of nutrients, especially nitrate, from soil to surrounding and downstream water bodies. Removal of nitrate from agricultural drainage by using controlled drainage systems, such as ditches installed with low-grade weirs, has been shown to help reduce nutrient loading into watersheds. However, the effect of low-grade weirs varies greatly, likely due to the differences in climate, system designs (e.g., hydraulic characteristics), and the resulting variation in microbial structures and functions in the ditch. In this study, we analyzed the temporal and spatial dynamics of microbiomes in a paired ditch system with weir-installed and uninstalled (control) channels over two years by using the 16S rRNA gene amplicon sequencing and the high-throughput quantitative PCR targeting various N cycle-associated genes [the Nitrogen Cycle Evaluation (NiCE) chip]. The installation of the low-grade weir had a significant impact on the microbiome structure and the distribution of denitrifiers. Microbiome structures also differed significantly between the ditch inlets and the outlets. Denitrification functional genes were more abundant in the inlets than in the other locations and in the channel installed with a low-grade weir. Additionally, oxygenic denitrifiers that use nitric oxide dismutase (nod) to produce N and O gases from nitric oxide were detected in the ditch channels, suggesting the occurrence of nitrate removal process that bypasses the production of nitrous oxide (NO). The ditch microbiomes sampled during high-flow seasons (i.e., spring and fall) exhibited greater similarity to each other than microbiomes sampled during low-flow seasons (i.e., summer). Taken together, this study indicates that the low-grade weirs have the potential to foster a more favorable environment for denitrifiers, resulting in an increase in the abundance of denitrification functional genes. These findings could offer valuable insights into system management and optimization strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177070DOI Listing

Publication Analysis

Top Keywords

low-grade weirs
16
nitrate agricultural
8
agricultural drainage
8
nitrogen cycle
8
installed low-grade
8
low-grade weir
8
denitrification functional
8
functional genes
8
nitric oxide
8
microbiomes sampled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!