Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The thalamus is crucial for supporting various cognitive behaviors due to its extensive connectivity with multiple cortical regions. However, the role of the thalamus and its functional connections with cortical regions in cognitive reasoning remains unclear, since previous research has mainly focused on cortical regions when studying the neural mechanisms underlying cognitive reasoning. To fill this knowledge gap, we utilized 7 T functional magnetic resonance imaging (fMRI) to study the activation patterns of the thalamus and its functional connections with cortical regions during cognitive reasoning task, while also examining how the complexity of reasoning tasks affects thalamic activation and functional connections with cortical regions. Our findings showed that cognitive reasoning processes are related to increased activation of the thalamus and its functional connections with a specific set of cortical regions, consisting of dorsolateral prefrontal cortex, inferior frontal sulcus, intraparietal sulcus, anterior cingulate cortex/presupplementary motor area, precuneus, and ventral medial prefrontal cortex. Moreover, the increase in relational complexity of the reasoning tasks led to a corresponding increase in thalamic activation and functional connectivity with cortical regions. Given the complex thalamus structure, including multiple distinct nuclei exhibiting specific functional connections with particular cortical regions, we used an atlas defined thalamic subdivisions based on its structural connectivity with different cortical regions. Our findings indicated that these different thalamic subregions not only exhibited distinct connectivity patterns with specific cortical regions during performance of cognitive reasoning, but also showed distinct connectivity patterns varied with task complexity. Overall, our study presents evidence of the thalamus's role and its connections with cortical regions in supporting increasingly complex cognitive reasoning behavior, illuminating its contribution to higher-order cognitive functions, such as reasoning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2024.10.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!