S-(+)-mecamylamine increases the firing rate of serotonin neurons and diminishes depressive-like behaviors in an animal model of stress.

Neuroscience

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), PO Box 70250, Ciudad de México 04510, Mexico. Electronic address:

Published: December 2024

Mecamylamine, a noncompetitive blocker of nicotinic acetylcholine receptors (nAChRs), is the racemic mixture of two stereoisomers: S-(+)-mecamylamine (S-mec) and R-(-)-mecamylamine (R-mec), with distinct interactions with α4β2 nAChRs. It has been shown that mecamylamine increases glutamate release and excites serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN). In this study, we separately evaluated the effects of S-mec and R-mec on 5-HT neuron excitability. S-mec (3 μM) increased firing frequency by 40 %, while R-mec (3 μM) raised it by only 22 %. S-mec acts as a positive allosteric modulator on high-sensitivity (HS) α4β2 nAChRs at glutamate terminals, enhancing spontaneous excitatory postsynaptic currents (sEPSCs) in 5-HT neurons. Conversely, R-mec decreased sEPSCs by blocking HS α4β2 nAChRs and reduced GABA-mediated inhibitory currents (sIPSCs) by blocking α7 nAChRs at GABAergic terminals. These mechanisms make S-mec more effective than R-mec in enhancing 5-HT neuron firing. Moreover, combining S-mec with TC-2559, a selective agonist of HS α4β2 nAChRs, increased firing frequency by 65 %, exceeding the effect of S-mec alone. To validate these findings, we evaluated the antidepressant effects of S-mec (1 mg/kg) combined with TC-2559 or RJR-2403, another α4β2 nAChR agonist. This combination successfully reduced depression-like behaviors, suggesting a potential treatment strategy for patients resistant to conventional antidepressants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2024.10.043DOI Listing

Publication Analysis

Top Keywords

α4β2 nachrs
16
s-mec
8
5-ht neurons
8
effects s-mec
8
5-ht neuron
8
increased firing
8
firing frequency
8
nachrs
6
r-mec
5
α4β2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!