A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring stakeholder perceptions about using artificial intelligence for the diagnosis of rare and atypical infections. | LitMetric

AI Article Synopsis

  • The study aimed to gather critical care providers' views on diagnosing rare infections and the use of AI-based decision-support systems (DSS).
  • An anonymous survey at Mayo Clinic found that many providers believed there were delays in diagnosing rare infections due to insufficient patient assessments and lack of consideration for those diagnoses.
  • While there's some familiarity with AI DSS, concerns about reliability, interpretability, workflow integration, and alert fatigue were common, highlighting the need for careful implementation to enhance diagnostic practices.

Article Abstract

Objectives: To evaluate critical care provider perspectives about diagnostic practices for rare and atypical infections and the potential for using artificial intelligence (AI) as a decision-support system (DSS).

Methods: We conducted an anonymous web-based survey among critical care providers at Mayo Clinic Rochester between 11/25/2023 and 1/15/2024, to evaluate their experience with rare and atypical infection diagnostic processes and AI-based DSSs. We also assessed the perceived usefulness of AI-based DSSs, their potential impact on improving diagnostic practices for rare and atypical infections, and the perceived risks and benefits of their use.

Results: A total of 47/143 providers completed the survey. 38/47 agreed that there was a delay in diagnosing rare and atypical infections. Among those who agreed, limited assessment of specific patient factors and failure to consider them were the most frequently cited important contributing factors (33/38). 38/47 reported familiarity with the AI-based DSS applications available to critical care providers. Less than half (18/38) thought AI-based DSSs often provided valuable insights for patient care, but almost three quarters (34/47) thought AI-based DDSs often provided valuable insight when specifically asked about their ability to improve the diagnosis of rare and atypical infections. All respondents rated reliability as important in enhancing the perceived utility of AI-based DSSs (47/47) and almost all rated interpretability and integration into the workflow as important (45/47). The primary concern about implementing an AI-based DSS in this context was alert fatigue (44/47).

Conclusion: Most critical care providers perceived that there are delays in diagnosing rare infections, indicating inadequate assessment and consideration of the diagnosis as the major contributors. Reliability, interpretability, workflow integration, and alert fatigue emerged as key factors impacting usability of AI-based DSS. These findings will inform the development and implementation of an AI-based diagnostic algorithm to aid in identifying rare and atypical infections.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2451-9046DOI Listing

Publication Analysis

Top Keywords

rare atypical
28
atypical infections
24
critical care
16
ai-based dsss
16
care providers
12
ai-based dss
12
ai-based
9
artificial intelligence
8
rare
8
diagnosis rare
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!