Histone lysine demethylase 4D (KDM4D) is a critical player in the regulation of tumorigenesis, emerging as a potential target for developing anti-tumor agents. In this study, a series of KDM4D inhibitors containing the 4,6-diarylquinoxaline scaffold were prepared based on the previously discovered hit compound QD-1. Among these inhibitors, 33a was the most potent compound, with an IC value of 0.62 μM. In an in vitro assay, 33a showed a superior ability to inhibit the viability of liver cancer Huh-7 cells with IC = 5.23 μM. 33a exhibits significant effects in inhibiting cell cycle progression and proliferation of liver cancer cells, as well as suppressing cell migration. This work provided a promising scaffold for developing KDM4D inhibitors, as well as a lead compound for the development of anti-tumor drugs targeting KDM4D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2024.117945 | DOI Listing |
Bioorg Med Chem
November 2024
Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming 650092, China. Electronic address:
Histone lysine demethylase 4D (KDM4D) is a critical player in the regulation of tumorigenesis, emerging as a potential target for developing anti-tumor agents. In this study, a series of KDM4D inhibitors containing the 4,6-diarylquinoxaline scaffold were prepared based on the previously discovered hit compound QD-1. Among these inhibitors, 33a was the most potent compound, with an IC value of 0.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences.
View Article and Find Full Text PDFEur J Med Chem
October 2024
Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site.
View Article and Find Full Text PDFGut
May 2024
Hepatic Surgery Center, Clinical Medicine Research Center of Hepatic Surgery of Hubei Province, and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
Objective: The gain of function (GOF) CTNNB1 mutations (CTNNB1 ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC.
Design: RNA sequencing was performed to identify the key downstream genes of CTNNB1 associated with immune escape.
J Chem Inf Model
January 2024
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; The Cloud Computing Engineering Research Center of Yunnan Province; Key Laboratory of Software Engineering of Yunnan Province; School of Software; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China.
Epigenetic modulators play an increasingly crucial role in the treatment of various diseases. In this case, it is imperative to systematically investigate the activity of these agents and understand their influence on the entire epigenetic regulatory network rather than solely concentrate on individual targets. This work introduces MT-EpiPred, a multitask learning method capable of predicting the activity of compounds against 78 epigenetic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!