A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity. | LitMetric

Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity.

Biomaterials

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. Electronic address:

Published: March 2025

Fungal infections affect over 13 million people worldwide and are responsible for 1.5 million deaths annually. Some deep cutaneous fungal infections may extend the dermal barriers to cause systemic infection, resulting in substantial morbidity and mortality. However, the management of deep cutaneous fungal infection is challenging and yet overlooked by traditional treatments, which only offer limited drug availability within deep tissue. In this study, we have developed an electrically stimulated microneedle patch to deliver miconazole into the subcutaneous layer. We tested its antifungal efficacy using in vitro and ex vivo models that mimic fungal infection. Moreover, we confirmed its anti-fungal and wound-healing effects in a murine subcutaneous fungal infection model. Furthermore, our findings also showed that the combination of miconazole and applied current synergistically stimulated the nociceptive sensory nerves, thereby activating protective cutaneous immunity mediated by dermal dendritic and γδ-T cells. Collectively, this study provides a new strategy for minimally invasive delivery of therapeutic agents and the modulation of the neuro-immune axis in deep tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2024.122908DOI Listing

Publication Analysis

Top Keywords

fungal infection
16
deep cutaneous
12
fungal infections
8
cutaneous fungal
8
deep tissue
8
fungal
6
deep
5
infection
5
electrically-driven drug
4
drug delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!