AI Article Synopsis

  • Aluminum is a common metal that is generally safe but can become toxic in high levels, harming organs like the kidneys and liver.
  • A study tested the protective effects of resveratrol-tempeh on aluminum-induced toxicity in mice, analyzing damage to the liver and kidneys after exposure.
  • Results indicated that aluminum caused significant organ damage, while resveratrol showed potential in reducing oxidative stress, suggesting it could help repair aluminum-induced liver and kidney damage.

Article Abstract

Aluminum is a widely distributed metal that, while generally safe at low levels, can become toxic when accumulated in the body. Its exposure is daily through various sources, including food, water, and medications. High levels of aluminum have been shown to adversely affect the kidneys and liver, leading to significant organ damage. Resveratrol-tempeh is a safe protective agent against organ damage caused by aluminum. Here, we investigated the impact of resveratrol on liver and kidney toxicity and Al-induced levels of catalase and malondialdehyde. The mice group was the control group, Al-group, Al+REST5-group, and Al+REST10-group. Aluminum and resveratrol were administered intraperitoneally to mice for four weeks, but resveratrol was administered one hour after exposure to aluminum. Mice were killed by cervical dislocation; the liver and kidney were isolated for slide, and the level of an antioxidant enzyme of catalase and oxidant of malondialdehyde was measured. The results showed that administration of aluminum at a dose of 200 mg/kg body weight caused glomerular shrinkage and proximal tubule degeneration in the kidneys. In addition, it also caused liver tissue damage, with hepatocytes undergoing degeneration, sinusoids dilating, and decreased body weight in the mice. Administration of resveratrol-tempeh tended to decrease malondialdehyde levels and increase catalase activity, although the changes were not significant. It seems that resveratrol-tempeh can repair liver and kidney damage and restore them to normal conditions. Conclusion: Aluminum at 200 mg/kg is toxic to mice. Resveratrol-tempeh can be considered a potential candidate to protect kidney and liver damage caused by aluminum chloride toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2024.102589DOI Listing

Publication Analysis

Top Keywords

liver kidney
12
aluminum
9
organ damage
8
damage caused
8
caused aluminum
8
resveratrol administered
8
body weight
8
damage
6
mice
6
liver
6

Similar Publications

Liver Cirrhosis: ancient disease, new challenge.

Med Clin (Barc)

December 2024

Servicio de Hepatología, Hospital Clínic de Barcelona, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, España; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona,, España. Electronic address:

Liver cirrhosis is a common cause of morbidity and mortality worldwide. Excessive alcohol consumption and metabolic associated steatotic liver disease are the most common etiological factors of cirrhosis in our region. Cirrhosis occurs in two well-differentiated phases, compensated and decompensated, depending on the absence or presence of complications, respectively.

View Article and Find Full Text PDF

Cellulite is an aesthetically distressing skin condition occurring in 80-90% of females and manifesting as dimples and depressions, producing an uneven surface to the skin. Our aim was to evaluate the effect of combined oral consumption of two dietary supplements based on chokeberry and tart cherry juices over a period of 32 days on cellulite reduction. Twenty women aged 21-49 with a cellulite grade of 1-2 according to the Nurnberger-Muller scale were participating in the study.

View Article and Find Full Text PDF

Background: Postoperative acute kidney injury (AKI) and chronic kidney disease (CKD) following pediatric liver transplantation (PLT) have not been comprehensively studied. This study aimed to evaluate the correlation between AKI and both 1-year CKD and mortality.

Methods: This retrospective study included 132 children aged between 3 months and 12 years who underwent PLT between 2017 and 2021.

View Article and Find Full Text PDF

A ganglioside-based immune checkpoint enables senescent cells to evade immunosurveillance during aging.

Nat Aging

December 2024

Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.

Although senescent cells can be eliminated by the immune system, they tend to accumulate with age in various tissues. Here we show that senescent cells can evade immune clearance by natural killer (NK) cells by upregulating the expression of the disialylated ganglioside GD3 at their surface. The increased level of GD3 expression on senescent cells that naturally occurs upon aging in liver, lung, kidney or bones leads to a strong suppression of NK-cell-mediated immunosurveillance.

View Article and Find Full Text PDF

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!