Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties. They showed dominant near-infrared photoluminescence (approx. 850 nm) and highest quantum yield (approx. 52 %, λ = 500 nm). Therefore, they were further subject to modification to ensure their transfer to the aqueous phase and improve biocompatibility. For this, different functionalization approaches were used. The first method relied on encapsulation with polymers like PSMA (poly(styrene co-maleic anhydride)) and PMAO (poly(maleic anhydride-alt-1-octadecene) coupled with polyetheramine (JEFF; Jeffamine M-1000), and the second relied on hydrophilization with PMAO. Furthermore, we also applied a surface ligand exchange process using DHLA (dihydrolipoic acid) and polyethylene glycol (PEG)-appended DHLA. The comprehensive study indicated that ZnCuInS/ZnS QDs functionalized with PMAO (ZnCuInS/ZnS@PMO) exhibited the highest photoluminescence (PL QY) along with ensured high colloidal stability in aqueous media. Moreover, no noticeable deterioration of the photoluminescence profile was observed for all used functionalization approaches. However, a significant decrease in QY was observed for almost all functionalized QDs except those that were PMO-capped. The synthesized QDs were systematically characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), UV-Vis absorption spectroscopy, and fluorescence spectroscopy. Biological studies indicate that the obtained hydrophilic ZCIS QDs are biocompatible and localized intracellularly inside endosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2024.214083DOI Listing

Publication Analysis

Top Keywords

aqueous phase
8
quantum dots
8
functionalization approaches
8
qds
7
phase transfer
4
transfer near-infrared
4
near-infrared zncuins/zns
4
zncuins/zns quantum
4
dots synthesis
4
synthesis characterization
4

Similar Publications

High-intensity focused ultrasound (HIFU) is a noninvasive soft tissue ablation technique, which utilizes ultrasound energy to induce thermal coagulation necrosis in targeted tissues. Whether this high energy causes side effects in vivo, such as the formation of peptide bonds, has not been fully investigated. Glycylglycine is the simplest dipeptide and hence is often used as a model compound for peptide studies.

View Article and Find Full Text PDF

The research discussed in this paper focused on experimental data using a perforated rotating disc column to determine the factors that impact the distribution of drop sizes. A standard test system was utilized, consisting of zinc ions and D2EHPA extractant. When the rotor speed is increased, a majority of droplets display a smaller range of diameters, primarily because of decreased coalescence and increased breakup effects.

View Article and Find Full Text PDF

Oxidative stress, associated with excessive production of reactive oxygen and nitrogen species (ROS, RNS), contributes to the development and progression of many ailments, such as aging, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, diabetes, cancer, preeclampsia or multiple sclerosis. While phenols and polyphenols are the most studied antioxidants structurally similar compounds such as anilines or thiophenols are sporadically analyzed despite their radical scavenging potential. This work assesses the impact of structural features of phenols and thiophenols on their antioxidant activity.

View Article and Find Full Text PDF

Low-molecular-weight compounds of certain structural features may form coacervates through liquid-liquid phase separation (LLPS). These coacervates can enter mammalian cells and affect cellular physiology. Controlling the properties of the coacervates inside cells, however, is a challenge.

View Article and Find Full Text PDF

A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase.

Environ Sci Process Impacts

January 2025

Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!