Investigating the interactions between an industrial lipase and anionic (bio)surfactants.

J Colloid Interface Sci

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark. Electronic address:

Published: February 2025

AI Article Synopsis

  • Synergies between amphiphiles and additives, like enzymes, in laundry products enhance sustainability by significantly lowering energy use, while traditional surfactants are harmful to the environment due to their petroleum origin and toxic byproducts.
  • This study examines the interaction of the industrial lipase LIPEX® with three biosurfactants (rhamnolipids, sophorolipids, and surfactin) and the conventional surfactant sodium dodecyl sulfate (SDS) using techniques like Small-angle X-ray scattering (SAXS) and isothermal titration calorimetry.
  • Findings show that while SDS activates the enzyme, the biosurfactants inhibit it; however, rhamnolipids and surfact

Article Abstract

In laundry formulations, synergies between amphiphiles and other additives such as enzymes increase sustainability through a large decrease in energy consumption. However, traditional surfactants are derived from petroleum, requiring chemical modifications (sulfonation, ethoxylation, or esterification) and generating environmental pollution through toxicity and low degradability. Use of biosurfactants removes these issues. To provide a firmer basis for the use of biosurfactants, we report on the interactions between the industrial lipase LIPEX® and three common biosurfactants, rhamnolipids, sophorolipids, and surfactin. The model surfactant sodium dodecyl sulfate (SDS) is included in the study for comparison. A thorough characterization by Small-angle X-ray scattering (SAXS) provides valuable information on the enzyme's oligomerization and the surfactant micelles' ellipsoidal morphology. Additionally, the enzymatic activity and complex formation in different surfactant mixtures are studied using isothermal titration calorimetry, activity assays, and SAXS. SDS activates the enzyme while promoting a controlled association of monomers while the biosurfactants inhibit the enzyme, independent of their effects on its quaternary structure. Rhamnolipids and surfactin promote lipase dimerization while sophorolipids have no significant effect on lipase quaternary structure. Based on these data, we propose a partial replacement that allows the enzyme to retain enzymatic activity while improving the environmental footprint of the formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.10.060DOI Listing

Publication Analysis

Top Keywords

interactions industrial
8
industrial lipase
8
enzymatic activity
8
quaternary structure
8
biosurfactants
5
investigating interactions
4
lipase
4
lipase anionic
4
anionic biosurfactants
4
biosurfactants laundry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!