Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Relying on surpassing high theoretical capacity (3,865 mAh/g) and the lowest relative electrode potential (0 V vs. metallic Li), lithium metal batteries (LMBs) have been regarded as the "holy grail" of next-generation energy storage technology. Whereases, the instability of pristine solid electrolyte interphase (SEI) layers and the disorderly growth of lithium dendrites are still significant challenges to the commercialisation of LMBs. In this study, a novel approach is introduced to homogenise Li deposition by incorporating an environmentally friendly electrolyte additive, gamma-cyclodextrin (γ-CD), in ether-based electrolytes. Through host-guest interactions, γ-CD additives not only form inclusion complexes to improve Li transference number to 0.86 but also encapsulate TFSI anions and other solvent molecules within the "cavity effect" to relieve unfavourable solvent effect. Electrochemical characterisations demonstrate that introducing 1 wt% γ-CD elevates the oxidation decomposition voltage of ether electrolytes to 4.15 V, thereby inhibiting the decomposition of ether electrolytes and reducing the fracture of SEI layers. According to reduce the nucleate potential, the Li//Cu half battery exhibits improved stability for 100 cycles, with an improved average Coulombic efficiency (CE) maintained above 98.4 %. Even if applied at high current densities of 5.0 mA cm for a capacity of 1.0 mAh cm, the Li//Li symmetric battery can cycle for over 800 h, and the Li//LiTiO (LTO) full battery retains 98.8 % of the initial capacity after 1,400 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.10.099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!