Background: The rapid growth of research in artificial intelligence (AI) and machine learning (ML) continues. However, it is unclear whether this growth reflects an increase in desirable study attributes or merely perpetuates the same issues previously raised in the literature.

Objective: This study aims to evaluate temporal trends in AI/ML studies over time and identify variations that are not apparent from aggregated totals at a single point in time.

Methods: We identified AI/ML studies registered on ClinicalTrials.gov with start dates between January 1, 2010, and December 31, 2023. Studies were included if AI/ML-specific terms appeared in the official title, detailed description, brief summary, intervention, primary outcome, or sponsors' keywords. Studies registered as systematic reviews and meta-analyses were excluded. We reported trends in AI/ML studies over time, along with study characteristics that were fast-growing and those that remained unchanged during 2010-2023.

Results: Of 3106 AI/ML studies, only 7.6% (n=235) were regulated by the US Food and Drug Administration. The most common study characteristics were randomized (56.2%; 670/1193; interventional) and prospective (58.9%; 1126/1913; observational) designs; a focus on diagnosis (28.2%; 335/1190) and treatment (24.4%; 290/1190); hospital/clinic (44.2%; 1373/3106) or academic (28%; 869/3106) sponsorship; and neoplasm (12.9%; 420/3245), nervous system (12.2%; 395/3245), cardiovascular (11.1%; 356/3245) or pathological conditions (10%; 325/3245; multiple counts per study possible). Enrollment data were skewed to the right: maximum 13,977,257; mean 16,962 (SD 288,155); median 255 (IQR 80-1000). The most common size category was 101-1000 (44.8%; 1372/3061; excluding withdrawn or missing), but large studies (n>1000) represented 24.1% (738/3061) of all studies: 29% (551/1898) of observational studies and 16.1% (187/1163) of trials. Study locations were predominantly in high-income countries (75.3%; 2340/3106), followed by upper-middle-income (21.7%; 675/3106), lower-middle-income (2.8%; 88/3106), and low-income countries (0.1%; 3/3106). The fastest-growing characteristics over time were high-income countries (location); Europe, Asia, and North America (location); diagnosis and treatment (primary purpose); hospital/clinic and academia (lead sponsor); randomized and prospective designs; and the 1-100 and 101-1000 size categories. Only 5.6% (47/842) of completed studies had results available on ClinicalTrials.gov, and this pattern persisted. Over time, there was an increase in not only the number of newly initiated studies, but also the number of completed studies without posted results.

Conclusions: Much of the rapid growth in AI/ML studies comes from high-income countries in high-resource settings, albeit with a modest increase in upper-middle-income countries (mostly China). Lower-middle-income or low-income countries remain poorly represented. The increase in randomized or prospective designs, along with 738 large studies (n>1000), mostly ongoing, may indicate that enough studies are shifting from an in silico evaluation stage toward a prospective comparative evaluation stage. However, the ongoing limited availability of basic results on ClinicalTrials.gov contrasts with this field's rapid advancements and the public registry's role in reducing publication and outcome reporting biases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549584PMC
http://dx.doi.org/10.2196/57750DOI Listing

Publication Analysis

Top Keywords

ai/ml studies
20
studies
16
high-income countries
12
registered clinicaltrialsgov
8
temporal trends
8
rapid growth
8
trends ai/ml
8
studies time
8
studies registered
8
study characteristics
8

Similar Publications

Background And Aims: Artificial Intelligence (AI) beginning to integrate in healthcare, is ushering in a transformative era, impacting diagnostics, altering personalized treatment, and significantly improving operational efficiency. The study aims to describe AI in healthcare, including important technologies like robotics, machine learning (ML), deep learning (DL), and natural language processing (NLP), and to investigate how these technologies are used in patient interaction, predictive analytics, and remote monitoring. The goal of this review is to present a thorough analysis of AI's effects on healthcare while providing stakeholders with a road map for navigating this changing environment.

View Article and Find Full Text PDF

The increasing threat of antimicrobial resistance has prompted a need for more effective antimicrobial stewardship programs (AMS). Artificial intelligence (AI) and machine learning (ML) tools have emerged as potential solutions to enhance decision-making and improve patient outcomes in AMS. This systematic review and meta-analysis aims to evaluate the impact of AI in AMS and to assess its predictive performance and diagnostic accuracy.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Drug repositioning for Parkinson's disease: an emphasis on artificial intelligence approaches.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1 to 2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials.

View Article and Find Full Text PDF

Vertebral fracture assessment (VFA) images from bone density machines enable the automated machine learning assessment of abdominal aortic calcification (ML-AAC), a marker of cardiovascular disease (CVD) risk. The objective of this study was to describe the risk of a major adverse cardiovascular event (MACE, from linked health records) in patients attending routine bone mineral density (BMD) testing and meeting specific criteria based on age, BMD, height loss, or glucocorticoid use have a VFA in the Manitoba Bone Mineral Density Registry. The cohort included 10 250 individuals (mean 75.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!