Efficient Transport Controlled by Biharmonic Frictional Driving.

Phys Rev Lett

Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain.

Published: October 2024

Dry friction has been proposed as a rectifying mechanism allowing mass transport over a vibrating surface, even when vibrations are horizontal and unbiased. It has been suggested that the drift velocity will always saturate when the energy of the input oscillation increases, leading to a vanishing efficiency that would hinder the applicability of this phenomenon. Contrary to this conjecture, in this Letter we experimentally demonstrate that, by carefully controlling the forcing oscillations, this system can maintain a finite transport efficiency for any input energy. A minimal friction model explains the observed dependencies of the drift velocity on the signal parameters in the case of biharmonic base oscillations, which can be extended to obtain efficiency estimates for any periodic excitation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.158201DOI Listing

Publication Analysis

Top Keywords

drift velocity
8
efficient transport
4
transport controlled
4
controlled biharmonic
4
biharmonic frictional
4
frictional driving
4
driving dry
4
dry friction
4
friction proposed
4
proposed rectifying
4

Similar Publications

Cu-EAB zeolite catalyst: A promising candidate with excellent SO poisoning resistance for NH-SCR reaction.

J Hazard Mater

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

In this work, we synthesized Cu-EAB catalysts with an EAB topology for the NH-SCR of NO and evaluated their resistance to SO poisoning for the first time. The Cu-EAB catalyst showed superior NO conversion and selectivity for N, along with a notable tolerance to high space velocities and SO, outperforming the commercial Cu-CHA catalyst. This enhanced resistance was attributed to the Cu species formation at the 2.

View Article and Find Full Text PDF

Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure.

View Article and Find Full Text PDF

The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) into smart shoes has proven effective for capturing detailed foot movements and spatiotemporal gait characteristics. While IMUs enable accurate foot trajectory estimation through the double integration of acceleration data, challenges such as drift errors necessitate robust correction techniques to ensure reliable performance.

View Article and Find Full Text PDF

This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.

View Article and Find Full Text PDF

Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

Fluids Barriers CNS

December 2024

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!