AI Article Synopsis

  • Genome-wide sequencing has opened up new possibilities for using genetics in medicine, specifically through the development of genetic risk scores (GRS) that estimate the combined impact of multiple genetic factors on health outcomes.
  • There has been a growing application of GRS in rheumatology, particularly for diseases like rheumatoid arthritis and lupus, since the introduction of polygenic risk scores in 2007.
  • Despite their potential, there isn't a standardized method for applying GRS in clinical settings, presenting a challenge for rheumatologists; this review offers a systematic approach to evaluate GRS for practical use in patient care.

Article Abstract

Background/historical Perspective: The advent of genome-wide sequencing and large-scale genetic epidemiological studies has led to numerous opportunities for the application of genetics in clinical medicine. Leveraging this information toward the formation of clinically useful tools has been an ongoing research goal in this area. A genetic risk score (GRS) is a measure that attempts to estimate the cumulative contribution of established genetic risk factors toward an outcome of interest, taking into account the cumulative risk that each of these individual genetic risk factors conveys. The purpose of this perspective is to provide a systematic framework to evaluate a GRS for clinical application.

Summary Of Current Literature: Since the initial polygenic risk score methodology in 2007, there has been increasing GRS application across the medical literature. In rheumatology, this has included application to rheumatoid arthritis, gout, spondyloarthritis, lupus, and inflammatory arthritis.

Major Conclusions: GRSs are particularly relevant to rheumatology, where common diseases have many complex genetic factors contributing to risk. Despite this, there is no widely accepted method for the critical application of a GRS, which can be a particular challenge for the clinical rheumatologist seeking to clinically apply GRSs. This review provides a framework by which the clinician may systematically evaluate a GRS.

Future Research Directions: As genotyping becomes more accessible and cost-effective, it will become increasingly important to recognize the clinical applicability of GRSs and identify those of the highest utility for patient care. This framework for the evaluation of a GRS will also help ensure reliability among GRS research in rheumatology, thereby helping to advance the field.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RHU.0000000000002152DOI Listing

Publication Analysis

Top Keywords

genetic risk
16
clinical rheumatologist
8
risk score
8
risk factors
8
genetic
6
risk
6
grs
6
clinical
5
risk scores
4
scores clinical
4

Similar Publications

Background: When coronavirus disease 2019 (COVID-19) mitigation efforts waned, viral respiratory infections (VRIs) surged, potentially increasing the risk of postviral invasive bacterial infections (IBIs). We sought to evaluate the change in epidemiology and relationships between specific VRIs and IBIs [complicated pneumonia, complicated sinusitis and invasive group A streptococcus (iGAS)] over time using the National COVID Cohort Collaborative (N3C) dataset.

Methods: We performed a secondary analysis of all prospectively collected pediatric (<19 years old) and adult encounters at 58 N3C institutions, stratified by era: pre-pandemic (January 1, 2018, to February 28, 2020) versus pandemic (March 1, 2020, to June 1, 2023).

View Article and Find Full Text PDF

, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.

View Article and Find Full Text PDF

Carriage of antimicrobial resistance genes in Escherichia coli of bovine origin.

Pol J Vet Sci

December 2024

Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia.

The present study aimed to search for the presence of the plasmid-mediated antimicrobial resistance genes in 106 Escherichia coli (E. coli) isolates from a total of 240 fresh fecal samples collected from 12 private cattle farms in Bingol province of East Turkey from November 2021 to January 2022. In those colistin-resistant E.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Uterine fibroids (UF) is the most common benign tumour of the female reproductive system. We investigated the joint contribution of genome-wide association studies (GWAS)-significant loci and environment-associated risk factors to the UF risk, along with epistatic interactions between single nucleotide polymorphisms (SNPs).

Methods: DNA samples from 737 hospitalised patients with UF and 451 controls were genotyped using probe-based PCR for seven common GWAS SNPs: rs117245733 , rs547025 rs2456181 , rs7907606 , , rs58415480 , rs7986407 , and rs72709458 .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!