A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation effect of alginate hydrogel containing losartan on wound healing and gene expression. | LitMetric

Skin tissue engineering has become an increasingly popular alternative to conventional treatments for skin injuries. Hydrogels, owing to their advantages have become the ideal option for wound dressing, and they are extensively employed in a mixture of different drugs to accelerate wound healing. Sodium alginate is a readily available natural polymer with advantages such as bio-compatibility and a non-toxicological nature that is commonly used in hydrogel form for medical applications such as wound repair and drug delivery in skin regenerative medicine. Losartan is a medicine called angiotensin receptor blocker (ARB) that can prevent fibrosis by inhibiting ATR (angiotensin II type 1 receptor). In this research, for the first time, three-dimensional scaffolds based on cross-linked alginate hydrogel with CaCl containing different concentrations of losartan for slow drug release and exudate absorption were prepared and characterized as wound dressing. Alginate hydrogel was mixed with 10, 1, 0.1, and 0.01 mg/mL of losartan, and their properties such as morphology, chemical structure, water uptake properties, biodegradability, stability assay, rheology, blood compatibility, and cellular response were evaluated. In addition, the therapeutic efficiency of the developed hydrogels was then assessed in an in vitro wound healing model and with a gene expression. The results revealed that the hydrogel produced was very porous (porosity of 47.37 ± 3.76 µm) with interconnected pores and biodegradable (weight loss percentage of 60.93 ± 4.51% over 14 days). All hydrogel formulations have stability under various conditions. The use of CaCl as a cross-linker led to an increase in the viscosity of alginate hydrogels. An in vitro cell growth study revealed that no cytotoxicity was observed at the suggested dosage of the hydrogel. Increases in Losartan dosage, however, caused hemolysis. In vivo study in adult male rats with a full-thickness model showed greater than 80% improvement of the primary wound region after 2 weeks of treatment with alginate hydrogel containing 0.1 mg/mL Losartan. RT-PCR and immunohistochemistry analysis showed a decrease in expression level of TGF-β and VEGF in treatment groups. Histological analysis demonstrated that the alginate hydrogel containing Losartan can be effective in wound repair by decreasing the size of the scar and tissue remodeling, as evidenced by future in vivo studies.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08853282241292144DOI Listing

Publication Analysis

Top Keywords

alginate hydrogel
20
wound healing
12
hydrogel
9
hydrogel losartan
8
wound
8
gene expression
8
wound dressing
8
wound repair
8
losartan
7
alginate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!