Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Existing haptic actuators are often rigid and limited in their ability to replicate real-world tactile sensations. We present a wearable haptic artificial muscle skin (HAMS) based on fully soft, millimeter-scale, multilayer dielectric elastomer actuators (DEAs) capable of significant out-of-plane deformation, a capability that typically requires rigid or liquid biasing. The DEAs use a thickness-varying multilayer structure to achieve large out-of-plane displacement and force, maintaining comfort and wearability. Experimental results demonstrate that HAMS can produce complex tactile feedback with high perception accuracy. Moreover, we show that HAMS can be integrated into extended reality (XR) systems, enhancing immersion and offering potential applications in entertainment, education, and assistive technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506163 | PMC |
http://dx.doi.org/10.1126/sciadv.adr1765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!