Enhanced flight performance and adaptive evolution of Mesozoic giant cicadas.

Sci Adv

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.

Published: October 2024

Insects have evolved diverse ecological flight behaviors and adaptations that played a key role in their large-scale evolutionary patterns. However, the evolution of their flight performance is poorly understood because reconstructing flight abilities of extinct insects is highly challenging. Here, we propose an integrated approach to reveal the evolution of flight performance of Palaeontinidae (giant cicadas), a Mesozoic arboreal insect clade with large bodies and wings. Our analyses unveil a faunal turnover from early to late Palaeontinidae during the latest Jurassic-earliest Cretaceous, accompanied by a morphological adaptive shift and remarkable improvement in flight abilities including increased flight speed and enhanced maneuverability. The adaptive aerodynamic evolution of Palaeontinidae may have been stimulated by the rise of early birds, supporting the hypothesis of an aerial evolutionary arms race (Air Race) between Palaeontinidae and birds. Our results provide a potential example of predator-induced morphological and behavioral macroevolution and contribute to our understanding of how powered flight has shaped animal evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506159PMC
http://dx.doi.org/10.1126/sciadv.adr2201DOI Listing

Publication Analysis

Top Keywords

flight performance
12
giant cicadas
8
evolution flight
8
flight abilities
8
flight
7
evolution
5
enhanced flight
4
performance adaptive
4
adaptive evolution
4
evolution mesozoic
4

Similar Publications

Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

December 2024

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

The purpose of this review is to compile and discuss available evidence in humans on the efficacy of YHM supplementation on performance in different exercise modalities. Yohimbine (YHM) is a naturally occurring alkaloid that induces increases in sympathetic nervous system (SNS) activation effectively initiating "fight or flight" responses. In supplement form, YHM is commonly sold as an isolated product or combined into multi-ingredient exercise supplements and is widely consumed in fitness settings despite the lack of empirical support until recently.

View Article and Find Full Text PDF

Evaluation of a New Tandem Mass Spectrometry Method for Sickle Cell Disease Newborn Screening.

Int J Neonatal Screen

November 2024

Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, 69500 Bron, France.

In France, sickle cell disease newborn screening (SCD NBS) has been targeted to at-risk regions since 1984, but generalization to the whole population will be implemented from November 2024. Although tandem mass spectrometry (MS/MS) is already used for the NBS of several inherited metabolic diseases, its application for SCD NBS has not been widely adopted worldwide. The aim of this study was to evaluate a dedicated MS/MS kit (Targeted MS/MS Hemo, ZenTech, LaCAR Company, Liege, Belgium) for SCD NBS and to compare the results obtained with those from an NBS reference center using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and cation-exchange high-performance liquid chromatography (CE-HPLC, Variant NBS, Biorad Laboratories, Inc.

View Article and Find Full Text PDF

Effects of Off-Season Heavy-Load Resistance Training on Lower Limb Mechanical Muscle Function and Physical Performance in Elite Female Team Handball Players.

J Funct Morphol Kinesiol

December 2024

Research Unit for Muscle Physiology and Biomechanics (MoB), Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark.

: Team handball involves a high number of rapid and forceful muscle actions. Progressive heavy-load resistance training is known to enhance mechanical muscle function; however, its transfer into functional performance in team handball athletes remains largely unknown. The current study aimed to analyze the effects of eight weeks undulating heavy-load resistance training on lower limb mechanical muscle function and sports-specific performance in elite female team handball players.

View Article and Find Full Text PDF

Evaluations of the usability of hydraulic resistance for resisted sprint-training purposes remains rare. Thus, this study compared step-by-step changes in spatiotemporal characteristics during the first 10 m of sprints with varying hydraulic resistance loads. Fourteen male athletes performed 20 m sprints under minimal (10 N, considered as normal sprint), moderate (100 N), and heavy (150 N) hydraulic resistance loads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!