A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatio-temporal variations of energy carbon emissions in Xinjiang based on DMSP-OLS and NPP-VIIRS nighttime light remote sensing data. | LitMetric

With the rapid economic development of Xinjiang Uygur Autonomous Region (Xinjiang), energy consumption became the primary source of carbon emissions. The growth trend in energy consumption and coal-dominated energy structure are unlikely to change significantly in the short term, meaning that carbon emissions are expected to continue rising. To clarify the changes in energy-related carbon emissions in Xinjiang over the past 15 years, this paper integrates DMSP/OLS and NPP/VIIRS data to generate long-term nighttime light remote sensing data from 2005 to 2020. The data is used to analyze the distribution characteristics of carbon emissions, spatial autocorrelation, frequency of changes, and the standard deviation ellipse. The results show that: (1) From 2005 to 2020, the total carbon emissions in Xinjiang continued to grow, with noticeable urban additions although the growth rate fluctuated. In spatial distribution, non-carbon emission areas were mainly located in the northwest; low-carbon emission areas mostly small and medium-sized towns; and high-carbon emission areas were concentrated around the provincial capital and urban agglomerations. (2) There were significant regional differences in carbon emissions, with clear spatial clustering of energy consumption. The clustering stabilized, showing distinct "high-high" and "low-low" patterns. (3) Carbon emissions in central urban areas remained stable, while higher frequencies of change were seen in the peripheral areas of provincial capitals and key cities. The center of carbon emissions shifted towards southeast but later showed a trend of moving northwest. (4) Temporal and spatial variations in carbon emissions were closely linked to energy consumption intensity, population size, and economic growth. These findings provided a basis for formulating differentiated carbon emission targets and strategies, optimizing energy structures, and promoting industrial transformation to achieve low-carbon economic development in Xinjiang.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508071PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312388PLOS

Publication Analysis

Top Keywords

carbon emissions
40
energy consumption
16
emissions xinjiang
12
emission areas
12
carbon
11
emissions
10
nighttime light
8
light remote
8
remote sensing
8
sensing data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!