A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of tidal fluctuations on bacterial community structure in Wuyuan Bay: A comparative analysis of waters inside and outside the tidal barrage. | LitMetric

Impact of tidal fluctuations on bacterial community structure in Wuyuan Bay: A comparative analysis of waters inside and outside the tidal barrage.

PLoS One

Collaborative Innovation Center for Intelligent Fishery, Higher Vocational College of Fujian Province, Xiamen Ocean Vocational College, Xiamen, China.

Published: October 2024

The tidal barrage at Wuyuan Bay effectively mitigated the odor from the tidal flat during ebb tide, however, its effect on bacterial community structure in waters are still unclear. In this study, high-throughput sequencing was used to analyze the structure of the microbial community in waters inside and outside the tidal barrage during flood and ebb tides. Results showed bacterial diversity was higher in water outside the barrage during flood tide. The dominated species at phylum and genus levels were various in waters inside and outside the tidal barrage during flood and ebb tides. The water inside during ebb tide (E1) were dominated by two cyanobacterial genera, Cyanobium_PCC-6307 (42.90%) and Synechococcus_CC9902 (12.56%). The microbial function, such as porphyrin and chlorophyll metabolism and photosynthesis, were increased in E1. Norank_f__Nitriliruptoraceae was identified as differential microorganism in waters inside the barrage. Inorganic nitrogen and nonionic ammonia were significantly high in E1, and were negatively correlated with norank_f__Nitriliruptoraceae. These results suggest tidal barrage blocks water exchange, resulting in the accumulation of nutrients in Wuyuan Bay. Consequently, the environment became favorable for the growth of cyanobacteria, leading to the dominance of algae in the water inside the barrage and posing the risk of cyanobacterial bloom. Higher Nitriliruptoraceae inside the barrage might be a cue for the change of water quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508120PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312283PLOS

Publication Analysis

Top Keywords

tidal barrage
20
waters inside
16
wuyuan bay
12
inside tidal
12
barrage flood
12
inside barrage
12
barrage
9
bacterial community
8
community structure
8
ebb tide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!