Super-resolution ultrasound (SRUS) has evolved significantly with the advent of Ultrasound Localization Microscopy (ULM). This technique enables sub-wavelength resolution imaging using microbubble contrast agents. Initially confined to 2D imaging, ULM has progressed towards volumetric approaches, allowing for comprehensive three-dimensional visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2D ULM, including dependency on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allowed motion correction in all direction, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2024.3485556 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!