Although micron-sized microgels have become important building blocks in regenerative materials, offering decisive interactions with living matter, their chemical composition mostly significantly varies when their network morphology is tuned. Since cell behavior is simultaneously affected by the physical, chemical, and structural properties of the gel network, microgels with variable morphology but chemical equivalence are of interest. This work describes a new method to produce thermoresponsive microgels with defined mechanical properties, surface morphologies, and volume phase transition temperatures. A wide variety of microgels is synthesized by crosslinking monomers or star polymers at different temperatures using thermally assisted microfluidics. The diversification of microgels with different network structures and morphologies but of chemical equivalence offers a new platform of microgel building blocks with the ability to undergo phase transition at physiological temperatures. The method holds high potential to create soft and dynamic materials while maintaining the chemical composition for a wide variety of applications in biomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202411772DOI Listing

Publication Analysis

Top Keywords

thermally assisted
8
assisted microfluidics
8
building blocks
8
chemical composition
8
chemical equivalence
8
phase transition
8
wide variety
8
microgels
6
chemical
5
microfluidics produce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!