Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2-NbSe. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544926PMC
http://dx.doi.org/10.1021/acsnano.4c10998DOI Listing

Publication Analysis

Top Keywords

ysr states
12
wave function
8
magnetic adatoms
8
adatoms superconductors
8
wave functions
8
wave
4
function engineering
4
engineering superconducting
4
superconducting substrates
4
substrates chiral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!