A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FSP1 Acts in Parallel with GPX4 to Inhibit Ferroptosis in COPD. | LitMetric

FSP1 Acts in Parallel with GPX4 to Inhibit Ferroptosis in COPD.

Am J Respir Cell Mol Biol

Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China.

Published: October 2024

AI Article Synopsis

  • Glutathione peroxidase 4 (GPX4) is crucial in chronic obstructive pulmonary disease (COPD), while Ferroptosis suppressor protein-1 (FSP1) may also play a significant, but unexplored, role in the disease's development.
  • The study involved comparing lung tissues from COPD patients and normal individuals, examining the effects of FSP1 on ferroptosis and its relationship to COPD using various laboratory methods, including gene expression analysis.
  • Results revealed that low FSP1 expression, caused by increased m6A modification of its mRNA, contributes to ferroptosis in COPD, suggesting that targeting FSP1 methylation could provide new treatment options for the disease.

Article Abstract

Glutathione peroxidase 4 (GPX4) has recently been reported to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Ferroptosis suppressor protein-1 (FSP1) is a protein that defends against ferroptosis in parallel with GPX4, but its role in the pathogenesis of COPD remains unexplored, and further research is needed. Normal and COPD lung tissues were obtained from lobectomy and lung transplant specimens, respectively. FSP1-overexpressing mice were established by monthly transfection with AAV9-FSP1 through modified intranasal administration. The expression of FSP1, GPX4, and prostaglandin-endoperoxide synthase 2 (PTGS2) was measured by Western blotting, immunohistochemistry and other methods. The correlation between FSP1 and ferroptosis and the role of FSP1 in COPD were explored by screening the expression of ferroptosis-related genes in a COPD cell model after the inhibition and overexpression of FSP1. We then explored the underlying mechanism of low FSP1 expression in patients with COPD in vitro by methylated RNA immunoprecipitation (MeRIP)-qPCR. We found that cigarette smoke exposure can lead to an increase in lipid peroxide production and ultimately ferroptosis, which is negatively regulated by FSP1 activity. FSP1 overexpression can prevent ferroptosis and alleviate emphysema. Next, we found that decreased FSP1 expression was caused by increased m6A modification of FSP1 mRNA. Moreover, the level of FSP1 decreased in a YTHDF2-dependent manner. These results indicate that METTL3-induced FSP1 mRNA methylation leading to low FSP1 expression is a potential therapeutic target for COPD. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2023-0467OCDOI Listing

Publication Analysis

Top Keywords

fsp1
14
fsp1 expression
12
parallel gpx4
8
copd
8
role pathogenesis
8
low fsp1
8
fsp1 mrna
8
ferroptosis
6
expression
5
fsp1 acts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!