Spinel ferrites demonstrate extensive applications in different areas, like electrodes for electrochemical devices, gas sensors, catalysts, and magnetic adsorbents for environmentally important processes. However, defects in the real spinel structure can change the many physical and chemical properties of spinel ferrites. Although the number of defects in a crystal spinel lattice is small, their influence on the vast majority of physical properties could be really decisive. This review provides an overview of the structural characteristics of spinel compounds (e.g., CoFeO, NiFeO, ZnFeO, FeO, γ-FeO, CoO, MnO, NiCoO, ZnCoO, CoMnO, etc.) and examines the influence of defects on their properties. Attention was paid to the classification (0D, 1D, 2D, and 3D defects), nomenclature, and the formation of point and surface defects in ferrites. An in-depth description of the defects responsible for the physicochemical properties and the methodologies employed for their determination are presented. DFT as the most common simulation approach is described in relation to modeling the point defects in spinel compounds. The significant influence of defect distribution on the magnetic interactions between cations, enhancing magnetic properties, is highlighted. The main defect-engineering strategies (direct synthesis and post-treatment) are described. An antistructural notation of active centers in spinel cobalt ferrite is presented. It is shown that the introduction of cations with different charges (e.g., Cu(I), Mn(II), Ce(III), or Ce(IV)) into the cobalt ferrite spinel matrix results in the formation of various point defects. The ability to predict the type of defects and their impact on material properties is the basis of defect engineering, which is currently an extremely promising direction in modern materials science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510202 | PMC |
http://dx.doi.org/10.3390/nano14201640 | DOI Listing |
J Mater Sci Mater Med
January 2025
Cyclotron Facility, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
This study aimed to synthesize MgFeLnO (where, Ln = Yb, Pr, Gd, and Nd) ferrite nanoparticles via the sol-gel process and investigate their structural, morphological, and magnetic properties for potential hyperthermia applications. X-ray diffraction analysis (XRD) confirmed the cubic spinel structure for all samples. Transmission electron microscopy (TEM) images revealed nanometer-scale dimensions and nearly spherical morphology.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Life Science and Agriculture, Zhoukou Normal University Zhoukou Henan 466001 China
This study reports a green, multi-component synthesis of 2-aminoimidazole-linked quinoxaline Schiff bases using a novel superparamagnetic acid catalyst. The catalyst consists of sulfo-anthranilic acid (SAA) immobilized on MnCoFeO@alginate magnetic nanorods (MNRs), achieving high SAA loading (1.8 mmol g) and product yields (91-97%).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Spinels are known for their enhanced photocatalytic activity which demonstrates as one of the promising solutions for the conversion of harmful organic dyes into simpler, less harmful molecules like CO and HO. In this study, spinel nickel aluminate, copper-doped nickel aluminate, and yttrium, copper co-doped nickel aluminate were synthesized using the sol-gel process with citric acid as a capping agent. The synthesized compounds were characterized by various techniques, including XRD, UV-DRS, XPS, and SEM-EDAX, and tested for their photocatalytic activity against the crystal violet dye under UV light.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDFMolecules
January 2025
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!