Porcine models are increasingly recognized for their similarities to humans and have been utilized in disease modeling and organ grafting research. While extensive metabolomics studies have been conducted in swine, primarily focusing on conventional cohorts or specific animal models, the composition and functions of fecal metabolites in pigs across different age groups-particularly in the elderly-remain inadequately understood. In this study, an untargeted metabolomics approach was employed to analyze the fecal metabolomes of pigs at three distinct age stages: young (one year), middle-aged (four years), and elderly (eight years). The objective was to elucidate age-associated changes in metabolite composition and functionality under standardized rearing conditions. The untargeted metabolomic analysis revealed a diverse array of age-related metabolites. Notably, L-methionine sulfoxide levels were found to increase with age, whereas cytidine-5-monophosphate levels exhibited a gradual decline throughout the aging process. These metabolites demonstrated alterations across various biological pathways, including energy metabolism, pyrimidine metabolism, lipid metabolism, and amino acid metabolism. Collectively, the identified key metabolites, such as L-methionine sulfoxide and Cholecalciferol, may serve as potential biomarkers of senescence, providing valuable insights into the mechanistic understanding of aging in pigs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509300PMC
http://dx.doi.org/10.3390/metabo14100558DOI Listing

Publication Analysis

Top Keywords

l-methionine sulfoxide
8
unveiling metabolic
4
metabolic trajectory
4
trajectory pig
4
pig feces
4
feces ages
4
ages senescence
4
senescence porcine
4
porcine models
4
models increasingly
4

Similar Publications

25.91%-Efficiency and Durable Inverted Perovskite Solar Cells Enabled by a Multifunctional Molecule Mediated Precursor Engineering.

Small

December 2024

School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

The stability of the precursor is essential for producing high-quality perovskite films with minimal non-radiative recombination. In this study, methionine sulfoxide (MTSO), which features multiple electron-donation sites, is strategically chosen as a precursor stabilizer and crystal growth mediator for inverted perovskite solar cells (PSCs). MTSO stabilizes the precursor by inhibiting the oxidation of iodide ions and passivates charged traps through coordination and hydrogen bonding interactions.

View Article and Find Full Text PDF

Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato.

BMC Genomics

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Article Synopsis
View Article and Find Full Text PDF

Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (HO) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated HO in the range of 0.

View Article and Find Full Text PDF

Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry.

Pathogens

November 2024

Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.

Article Synopsis
  • Chronic wasting disease (CWD) is a prion disease that impacts both wild and farmed elk, where infectious proteins cause normal proteins to misfold.
  • A study used mass spectrometry to analyze prion proteins from elk inoculated with CWD, focusing on various peptides to measure prion quantity and composition.
  • Results indicated differing amounts of prion proteins in the elk's brain tissue and highlighted the presence of methionine oxidation, demonstrating how mass spectrometry can help identify prion strains on a molecular level.
View Article and Find Full Text PDF

MsrB1 is a thiol-dependent enzyme that reduces protein methionine--sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!