The aim of the current study is to develop chitosan-based biomaterials which can sustainably release acetylsalicylic acid while presenting significant biological activity. Herein, an innovative ionic bonding strategy between hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and acetylsalicylic acid (AA) was proposed, skillfully utilizing the electrostatic attraction of the ionic bond to achieve the controlled release of drugs. Based on this point, six crosslinked -[(2-hydroxy-3-trimethylammonium)propyl]chitosan acetylsalicylic acid salt (CHACAA) hydrogel films with varying acetylsalicylic acid contents were prepared by a crosslinking reaction. The results of H nuclear magnetic resonance spectroscopy (H NMR) and scanning electron morphology (SEM) confirmed the crosslinked structure, while the obtained hydrogel films possessed favorable thermal stability, mechanical properties, and swelling ability. In addition, the drug release behavior of the hydrogel films was also investigated. As expected, the prepared hydrogel films demonstrated the capability for the sustainable release of acetylsalicylic acid due to ion pair attraction dynamics. Furthermore, the bioactivities of CHACAA-3 and CHACAA-4 hydrogel films with acetylsalicylic acid molar equivalents of 1.25 and 1.5 times those of HACC were particularly pronounced, which not only exhibited an excellent drug sustained-release ability and antibacterial effect, but also had a higher potential for binding and scavenging inflammatory factors, including NO and TNF-α. These findings suggest that CHACAA-3 and CHACAA-4 hydrogel films hold great potential for applications in wound dressing, tissue engineering scaffolds, and drug carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509478 | PMC |
http://dx.doi.org/10.3390/md22100450 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers.
View Article and Find Full Text PDFChembiochem
December 2024
Nankai University, Analytical Sciences, No. 94, Weijin Road, 300071, Tianjin, CHINA.
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!