Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510074PMC
http://dx.doi.org/10.3390/membranes14100215DOI Listing

Publication Analysis

Top Keywords

charged lipids
12
giant unilamellar
8
unilamellar vesicles
8
high cholesterol
8
chol concentrations
8
mixtures charged
8
ionic strength
8
electroformation protocol
8
lipid mixture
8
chol demixing
8

Similar Publications

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

Characterization of individual biological nanoparticles can be significantly improved by coupling complementary analytical methods. Here, we combine resistive-pulse sensing (RPS) with fluorescence lifetime imaging microscopy (FLIM) to differentiate liposomes at the single-particle level. RPS measures the particle volume, shape, and surface-charge density, and FLIM determines the fluorescence lifetime of the fluorophore associated with the lipid membrane.

View Article and Find Full Text PDF

Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.

View Article and Find Full Text PDF

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.

View Article and Find Full Text PDF

Metabolomics of mothers of children with autism, idiopathic developmental delay, and Down syndrome.

Sci Rep

December 2024

Department of Nutrition, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616, USA.

Developmental delays have been associated with metabolic disturbances in children. Previous research in the childhood autism risk from genetics and the environment (CHARGE) case-control study identified neurodevelopment-related plasma metabolites in children, suggesting disturbances in the energy-related tricarboxylic acid (TCA) cycle and 1-carbon metabolism (1CM). Here, we investigated associations between children's neurodevelopmental outcomes and their mothers' plasma metabolite profiles in a subset of mother-child dyads from CHARGE, including those with autism spectrum disorder (ASD, n = 209), Down syndrome (DS, n = 76), idiopathic developmental delay (iDD, n = 64), and typically developed (TD, n = 185) controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!