Cotton ( spp.) is the most important fibre crop worldwide. Black root rot and Fusarium wilt are two major diseases of cotton caused by soil-borne and f. sp. (), respectively. Phenotyping plant symptoms caused by soil-borne pathogens has always been a challenge. To increase the uniformity of infection, we adapted a seedling screening method that directly uses liquid cultures to inoculate the plant roots and the soil. Four isolates, each of and , were collected from cotton fields in Australia and were characterised for virulence on cotton under controlled plant growth conditions. While the identities of all four isolates were confirmed by multilocus sequencing, only two of them were found to be pathogenic on cotton, suggesting variability in the ability of isolates of this species to cause disease. The four isolates were phylogenetically clustered together with the other Australian isolates and displayed both external and internal symptoms characteristic of Fusarium wilt on cotton plants. Furthermore, the isolates appeared to induce varied levels of plant disease severity indicating differences in their virulence on cotton. To contrast the virulence of the isolates, four putatively non-pathogenic () isolates collected from cotton seedlings exhibiting atypical wilt symptoms were assessed for their ability to colonise cotton host. Despite the absence of genes (, , and ) characteristic of , all four isolates retained the ability to colonise cotton and induce wilt symptoms. This suggests that slightly virulent strains of may contribute to the overall occurrence of Fusarium wilt in cotton fields. Findings from this study will allow better distinction to be made between plant pathogens and endophytes and allow fungal effectors underpinning pathogenicity to be explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508790 | PMC |
http://dx.doi.org/10.3390/jof10100715 | DOI Listing |
J Sex Med
January 2025
Clinical Obstetric and Gynecological V Buzzi, ASST-FBF-Sacco, Via Castelvetro 24-20124-University of the Study of Milan, Milan, Italy.
Background: Vulvodynia is a multifactorial disease affecting 7%-16% of reproductive-aged women in general population; however, little is still known about the genetics underlying this complex disease.
Aim: To compare polygenic risk scores for hormones and receptors levels in a case-control study to investigate their role in vulvodynia and their correlation with clinical phenotypes.
Methods: Our case-control study included patients with vestibulodynia (VBD) and healthy women.
J Biol Chem
January 2025
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China. Electronic address:
Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR).
View Article and Find Full Text PDFJ Am Med Dir Assoc
January 2025
Department of Neurology, Renaissance School of Medicine, Stony Brook, NY, United States.
Objectives: Early research reported that older adults who stopped walking when they began a conversation were more likely to fall in the future. As a systematic measure of dual-task performance, Verghese and colleagues developed the Walking While Talking (WWT) test, in which a person walks at a normal pace while reciting alternate letters of the alphabet. The present paper highlights key findings from the 2 decades of research using the WWT test.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany, Cotton University, Guwahati, 781001, Assam, India. Electronic address:
Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!